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Abstract
This study investigates models for course
stage recognition, a novel task in Spoken
Language Understanding (SLU) aimed at
segmenting classroom recordings into dis-
tinct instructional phases. Two approaches
are evaluated: an end-to-end SLU model
based on the WavLM base+ speech en-
coder, and a multistage SLU method in-
tegrating Whisper for Automatic Speech
Recognition and ChatGPT 4o for Natural
Language Understanding. The study com-
pares the performance of these models to
explore stage recognition without relying
on intermediate text representations. Re-
sults indicate that the multistage approach
excels in fine-grained classification across
five stages—Opening, Lecture, Break, Con-
clusion, and Others—but is outperformed
by the end-to-end model in distinguishing
the Lecture stage. The findings suggest
that a speech-language model capable of
performing in-context learning directly on
speech data could further enhance the ac-
curacy of course stage recognition.

Keywords: Course Stage Recogni-
tion, Spoken Language Understanding, Speech
Model, Large Language Model

1 Introduction
With the rapid advancement of artificial
intelligence(AI), speech recognition and
large language models (LLMs) have signifi-
cantly reduced the cost of human-computer
interaction, leading to widespread applica-
tions in various fields, including education.
AI has been applied to assist children’s
learning (Okur et al., 2023), automatically
assess students’ attention (Parambil et al.,
2022), and analyze classroom discourse
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to enhance teaching quality (Wang et al.,
2024). Although deep learning models have
been successfully used in these domains,
AI applications for segmenting classroom
activities based on content to support
teaching organizations mostly rely on tradi-
tional machine learning models classroomdis-
course1,classroomdiscourse2,classroomdiscourse3.

Classroom activity segmentation can be
achieved with a multistage Spoken Language
Understanding (SLU) model, using Whisper
Large V3 (Radford et al., 2023) for ASR and
ChatGPT, the gpt-4o version 1 for NLU. Whis-
per’s noise resilience and multilingual support
make it ideal for classroom recordings, while
ChatGPT can often interpret correct mean-
ings despite ASR errors. This combination
reduces the impact of ASR errors on NLU
and enables training-free classroom activity
segmentation. However, the reliance on text
limits its effectiveness for low-resource or un-
written languages.

To explore alternatives to the multistage
SLU approach for segmenting classroom activ-
ities, we propose the task of course stage recog-
nition. The goal is to segment long classroom
recordings into five categories: Opening, Lec-
ture, Break, Conclusion, and Others.

We developed an end-to-end SLU model
using the self-supervised learning speech en-
coder WavLM base+ (Chen et al., 2022) to
extract speech features, followed by Convolu-
tional Neural Networks to reduce the length
of the speech features sequence, and Bidi-
rectional Long Short-Term Memory (Schuster
and Paliwal, 1997) to predict the classroom
stage category for each time frame. This
study compares the performance of end-to-end

1https://platform.openai.com/docs/models/gpt-4o
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Figure 1: The proposed end-to-end and multistage
spoken language understanding (SLU) model. (a)
The end-to-end model uses WavLM (Chen et al.,
2022) for sequence labeling. (b) The multistage
model uses Whisper Large V3 (Radford et al.,
2023) for ASR and ChatGPT4-o2 for NLU.

and multistage SLU models in the classroom
stage recognition task. Figure 1 illustrates the
model architecture of both SLU models. We
summarize the contributions of this study in
the following:

• We propose course stage recognition, a
novel SLU task designed for long audio
recordings.

• We analyze the advantages, limitations,
and trade-offs between multistage and
end-to-end approaches in the context of
course stage recognition.

• To enhance transparency and promote
further research, we publicly release
the dataset and code used in this
study at https://github.com/yiting9510/
Course-Stage-Recognition.

2 Related Works
In previous studies aimed at improving teach-
ing quality, researchers employed random for-
est models to classify three types of classroom
activities: teacher lecturing, whole class dis-
cussion, and student group work, using audio
data (Wang et al., 2014). Other studies ap-
plied Naïve Bayes classifiers on audio (Don-
nelly et al., 2016a) and multi-sensor (Don-

nelly et al., 2016b) data to recognize five in-
structional segments: question and answer,
procedures and directions, supervised seat-
work, small group work, and lecture. Our re-
search leverages a more advanced deep learn-
ing model to analyze online course audio, cat-
egorizing it into five segments: Opening, Lec-
ture, Break, Conclusion, and Others.

Course stage recognition is built upon Spo-
ken Language Understanding (SLU), with
two primary approaches: a multistage ap-
proach (Bastianelli et al., 2020) that sepa-
rates Automatic Speech Recognition (ASR)
and Natural Language Understanding (NLU),
and an end-to-end approach (Wang et al.,
2023; Arora et al., 2024). While the mul-
tistage method allows independent ASR and
NLU training, it is vulnerable to ASR errors in
noisy environments like classrooms (Schlotter-
beck et al., 2022). The end-to-end approach,
although potentially could have better perfor-
mance, often faces limited training data, es-
pecially in specialized domains such as educa-
tion.

SLU tasks have traditionally used Long
Short-Term Memory (Schmidhuber et al.,
1997; Schuster and Paliwal, 1997) (LSTM)
and encoder-decoder architectures (Sutskever,
2014; Wu, 2016; Chiu et al., 2018), with
recent advances in self-attention mecha-
nisms (Vaswani, 2017) enhancing models’ abil-
ity to capture dependencies within input se-
quences. These advancements led to the devel-
opment of large language models (LLMs), such
as GPT (Radford et al., 2018, 2019; Brown,
2020), which have strong capabilities in Natu-
ral Language Processing (NLP). Speech mod-
els built on transformer architectures, like
Wav2Vec 2.0 (Baevski et al., 2020), Hu-
BERT (Hsu et al., 2021), and WavLM (Chen
et al., 2022), use self-supervised learning (SSL)
to learn to extract robust speech features ap-
plicable to various speech tasks (wen Yang
et al., 2021; Tsai et al., 2022). Whisper (Rad-
ford et al., 2023) is an encoder-decoder ASR
transformer-based model trained on large an-
notated datasets, demonstrating strong ASR
performance across languages and robust to
noisy conditions.

Given the limited labeled data and potential
noise in our online course audio, we leveraged
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pre-trained models and off-the-shelf LLM ser-
vices to enhance performance. Specifically, we
compared two models: a multistage design us-
ing Whisper large v3 for ASR and with Chat-
GPT 4o for NLU (He and Garner, 2023), and
an end-to-end model combining WavLM base
with CNN and LSTM layers. We evaluated
the performance of these models in classroom
stage recognition and discussed potential areas
for improvement.

3 Method

In this study, we propose a novel task of
course stage recognition and have constructed
a dataset for this purpose. We developed
an end-to-end spoken language understanding
(SLU) model based on WavLM and compared
it to a multistage SLU model combining Whis-
per and ChatGPT. We analyzed the perfor-
mance of these systems in the context of course
stage classification. Below, we describe the
dataset preparation process and then explain
the design of the two SLU models.

3.1 Data Preparation
To create a dataset for course stage recogni-
tion, we focused on Mandarin online teaching
courses in Taiwan, such as recordings of school
lessons for junior high and high school stu-
dents, as well as videos from tutoring centers.
We searched for suitable course recordings on
online video platforms and public course web-
sites, extracted the audio, and manually an-
alyzed the content to label different course
stages.

Based on the framework outlined by (Davis,
2009), courses can be divided into nine stages:
Introduction, Opening, Lecture, Presentation,
Break, Transition, Conclusion, Summary, and
Others. We used this definition as a reference
but merged several similar stages, ultimately
classifying the course stages into the follow-
ing five categories: Opening includes teacher
greetings and pre-class reminders, which are ei-
ther unrelated to the main content or provide
recaps of previous lessons. Lecture covers
all content related to the course topic, includ-
ing guided exercises. Break refers to silent
periods after the teacher announces a break,
as well as off-topic conversations. Conclu-
sion summarizes what was covered in the les-

son, previews the next session, and includes
farewells. Others encompasses any other pe-
riods, such as time before the class officially
begins, after it ends, or interruptions due to
technical issues.

Additionally, we defined a simplified class-
room stage recognition task, in which courses
are categorized into only two stages: Lec-
ture and Others. In this setting, the original
Opening, Lecture, and Conclusion stages are
grouped under the broad category of Lecture,
while Break and any other non-instructional
periods are grouped into the Others category.

We manually collected and annotated the
recordings according to these standards, label-
ing each time segment according to its corre-
sponding classroom stage. We ensured that
each time segment in the course had only
one assigned stage. In total, we collected
65 course recordings and manually annotated
the classroom stages. The statistical data of
the dataset is shown in Table 1. Notably,
the average course length was 15 minutes,
which required the method to handle long au-
dio files effectively. The proportion of Lec-
ture stage recordings was 87.8%, significantly
higher than the other four stages, necessitating
methods capable of addressing extreme class
imbalance.

Statistic Description Value
Total Recordings 65
Total Duration (hrs) 90.67
Average Length (min) 15.15

Stage Duration Percentages
Opening Stage % 2.50%
Lecture Stage % 87.80%
Break Stage % 2.80%
Conclusion Stage % 2.60%
Other Stage % 4.30%

Table 1: Course Recording Statistics

Our observations also revealed that not all
five stages were present in every course, and
transitions between stages did not always fol-
low fixed patterns. This indicates that meth-
ods must be able to analyze contextual infor-
mation to accurately perform classroom stage
recognition.

For the testing dataset, a pre-selected set of
10 recordings was used to ensure coverage of



all stages. The remaining 55 recordings are
split into training and validation sets at an
approximate 8:2 ratio based on their total du-
ration. Two different training-validation splits
were randomly sampled, and the average score
across these splits was used as the final perfor-
mance metric.

3.2 Model Design
3.2.1 End-to-End SLU Model
The proposed architecture integrates a
Transformer-based Self-Supervised Learn-
ing (SSL) speech encoder, Convolutional
Neural Networks (CNN), and Bidirectional
Long Short-Term Memory (BiLSTM) layers,
addressing the task as a sequence labeling
problem.

Figure 1a illustrates the end-to-end SLU
model structure. The SSL speech encoder,
specifically the WavLM Base+ model pre-
trained on large-scale speech data, is cho-
sen due to its proven ability to extract ro-
bust speech features that generalize well across
various speech processing tasks. These pre-
trained models have shown superior perfor-
mances (wen Yang et al., 2021; Tsai et al.,
2022; Feng et al., 2023), even when the encoder
remains frozen, making them well-suited for
the course stage recognition task where labeled
data may be scarce. Since the repesentation
extracted by the speech encoder is too long
for efficient training in stage classification, a
CNN is applied to further reduce the sequence
length, followed by a BiLSTM layer that clas-
sifies each time frame into its corresponding
course stage.

In this architecture, the SSL encoder re-
mains frozen, and only the CNN and BiL-
STM layers are trained. Experiments were
conducted with 2-stage configurations: a de-
tailed 5-stage classification and a simplified 2-
stage classification. Due to the computational
cost of Transformer-based models increasing
rapidly with input length, the maximum input
duration is limited to 30 seconds. For longer
audio files, a sliding window approach is used
to segment them into 30-second chunks with a
10-second overlap.

To address the issue of data imbalance, par-
ticularly the overrepresentation of the ”Lec-
ture” stage, several data augmentation tech-

niques were applied. In addition to downsam-
pling the ”Lecture” segments to match the
second most frequent class and upsampling
non-Lecture segments until their total num-
ber reached approximately one-third of the
total ”Lecture” segments, we also employed
augmentation techniques such as TimeStretch
and Gaussian noise. TimeStretch was used
to slightly alter the speed of the audio with-
out affecting its pitch, while Gaussian noise
was added to enhance robustness against noise
in the input data. These augmentations
helped improve model generalization and per-
formance, especially in cases where training
data was limited.

For model training, cross-entropy loss was
used as the loss function. To evaluate model
performance, the F1 score was chosen as the
primary metric due to its ability to balance
precision and recall, especially in imbalanced
datasets. The F1 score was computed for each
class and then aggregated using either macro-
averaging, where all classes are treated equally,
or micro-averaging, which in this case is equiv-
alent to accuracy. This provided a compre-
hensive measure of the model’s classification
performance.

Precisionc =
TPc

TPc + FPc
(1)

Recallc =
TPc

TPc + FNc
(2)

F1c =
2 · Precisionc · Recallc
Precisionc + Recallc

(3)

Macro-F1 =
1

C

C∑
c=1

F1c (4)

During testing, the model’s predictions
are converted into time-based segments, with
start time, end time, and the corresponding
stage. Both predictions and ground truth
are then converted into one-dimensional arrays
with 1,000 frames per second, allowing precise
alignment. The F1 score is calculated based
on these frame-level vectors to evaluate the
model’s performance.

3.2.2 Multistage SLU Model
We developed a multistage SLU model com-
bining Whisper large v3 and ChatGPT 4o for
classroom stage classification, as illustrated in



Model Macro-F1 score Micro-F1 score
End-to-End 0.24559/0.88203 0.82984/0.97111
End-to-End w/ augmentation 0.33477/0.85778 0.84194/0.96629
End-to-End w/ augmentation & undersampling 0.30493/0.88434 0.84299/0.97160
End-to-End w/ augmentation & oversampling 0.39199/0.91195 0.85136/0.97736
Multistage 0.49196/0.74734 0.85295/0.94295

Table 2: Comparison of End-to-End model(WavLM base+ with CNN and BiLSTM) and Multistage
model(Whisper Large v3 and ChatGPT 4o) performance for class stage recognition performance, where
performance under 5 stage (left) and 2 stage (right) settings are shown.

Figure 1b. The model operates in two stages:
first, Whisper large v3 performs automatic
speech recognition (ASR), converting audio
into text with timestamps. We use Whis-
perX (Bain et al., 2023) for more accurate
long-form transcription and to reduce halluci-
nation.

In the second stage, ChatGPT 4o processes
the transcribed text for natural language un-
derstanding (NLU). It analyzes the transcrip-
tion to infer classroom stages. Given the
length of classroom sessions, ChatGPT 4o uses
a two-pass process: first, summarizing chunks
of transcription (up to 30 minutes each) to re-
duce the length, then analyzing the summaries
to classify each time segment into its respec-
tive classroom stage.

The key benefit of this approach is the
use of powerful pre-trained models that re-
quire no additional training. With appropri-
ate prompts, the system can accurately pre-
dict stages on test data, even when ASR errors
are present in the transcription. Performance
is evaluated by comparing the predicted stage
start/end times with the ground truth using
the F1 score.

4 Experimental Results

4.1 Model Performance Evaluation
As shown in Table 2, for the 5-stage course
classification, the multistage model achieves
the highest Macro-F1 score (0.49196) and
slightly outperforms the end-to-end models in
Micro-F1 score (0.85295 vs. 0.85136). This in-
dicates the multistage model handles class im-
balance better, particularly for less frequent
categories, resulting in a superior Macro-F1
score. Among the end-to-end models, the
one using augmentation and oversampling per-
forms best, with a Macro-F1 score of 0.39199

and Micro-F1 score of 0.85136, though it still
lags behind the multistage model in handling
imbalanced data.

In the 2-stage classification, both models
improve significantly. The end-to-end model
with augmentation and oversampling achieves
the highest Micro-F1 (0.97736) and Macro-
F1 (0.91195) scores, outperforming the multi-
stage model. This result reflects the simpler
task’s reduced complexity, where the end-to-
end model excels by focusing on the two main
categories, ”Lecture” and ”Others.” While the
multistage model performs decently with a
Micro-F1 of 0.94295, it shows a larger gap in
Macro-F1 (0.74734), highlighting its less effec-
tive handling of the simplified task.

Confusion matrices (Figures 2a and 2b) re-
veal that in the 5-stage classification, the end-
to-end model tends to overpredict the ”Lec-
ture” category, leading to an imbalanced per-
formance, while the multistage model dis-
tributes predictions more evenly, contribut-
ing to its higher Macro-F1 score. However,
in the 2-stage classification, the end-to-end
model performs better, reducing prediction im-
balance (Figures 3a and 3b).

In summary, each model demonstrates dis-
tinct advantages. The end-to-end model per-
forms exceptionally well in the 2-stage task,
achieving the highest Micro-F1 and Macro-F1
scores. On the other hand, the multistage
model shows superior performance in the more
complex 5-stage task, particularly in handling
class imbalances. However, both models ex-
hibit limitations: the end-to-end model faces
challenges in distinguishing between stages
with similar characteristics, while the multi-
stage model risks losing important informa-
tion, which could impair its ability to accu-
rately recognize certain categories.
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Figure 2: 5-stage recognition Confusion matrix of (a) End-to-end model with data augmentation and
oversampling (b) multistage model

(a) (b)

Figure 3: 2-stage recognition Confusion matrix of (a) End-to-end model with data augmentation and
oversampling (b) multistage model

4.2 Applications and Impacts
The rise of online educational resources has led
to a lack of proper segmentation in video and
audio materials, mainly due to the high cost
of manual annotation. Course stage recogni-
tion addresses this by helping students quickly
find relevant content, improving their learn-
ing experience. For educators, it offers in-
sights into course structure, enabling better
content organization. Educational platforms
benefit from more accessible and streamlined
content. Our research also advances textless
spoken language understanding (SLU), par-
ticularly for low-resource and unwritten lan-
guages, promoting broader access to educa-
tional resources for underrepresented language
communities.

4.3 Limitation and Future Work
The end-to-end SLU model in this study faces
the challenge of having too short a context
window, making it difficult to capture long-
term dependencies, which results in an in-
ability to differentiate between similar course
stages. On the other hand, multistage models,

constrained by their modular design, are prone
to losing information, making certain stages
harder to recognize. Additionally, relying on
ChatGPT for NLU in multistage SLU raises
privacy concerns for certain applications.

Future work includes developing an end-
to-end SLU model capable of in-context learn-
ing. This could be achieved by incorporating a
Speech Language Model (SLM), as suggested
in recent work (Hsu et al., 2023). The goal
would be to use trainable prompts, enabling
the SLM (Lakhotia et al., 2021; Kharitonov
et al., 2021) to perform SLU on the entire class-
room recording, while preserving rich speech
information. However, the main challenge is
the high computational cost of handling long
input sequences.

5 Conclusion

This paper introduces course stage recognition,
a novel SLU task aimed at segmenting course
content using audio. We propose two mod-
els: an end-to-end model based on WavLM
and a multistage SLU model using Whisper
for transcription and ChatGPT for text under-



standing. Experimental results demonstrate
that both approaches show promising capa-
bilities but have limitations. The end-to-end
model can recognize some of the rarer stages
but struggles with distinguishing other similar
stages, while the multistage model effectively
differentiates stages through text analysis but
performs worse than the end-to-end model in
identifying some of the rarer stages. These re-
sults highlight the challenges of course stage
recognition. Future work includes developing
a speech-language model with in-context learn-
ing on speech data to improve performance.
We have made our dataset and code publicly
available to encourage further research.

Declaration of the Use of Generative
AI and AI-assisted Technologies in
Writing

During the preparation of this paper, the au-
thor(s) used ChatGPT for writing improve-
ment. After using these tools, the author(s)
reviewed and edited the content as needed and
take(s) full responsibility for the content of the
publication.
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