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Abstract. An increasing number of new studies emerged to apply computer vision 
(CV) to street view imagery (SVI) data to objectively extract the pixels of various 
streetscape features such as trees, sky, and buildings to proxy urban scene qualities. 
However, human perceptions like imageability have a subtle relationship to street 
visual elements which cannot be fully captured by the extracted view indices. Con-
versely, subjective measures using survey and interview data explain more human 
behaviours. However, the effectiveness of integrating subjective measures with the 
SVI dataset has been less discussed. To address this, we integrated crowdsourcing, 
CV, and machine learning (ML) to subjectively measure four important perceptions 
suggested by classical urban design theory. We first collected experts’ ratings on 
sample SVIs regarding the four qualities which became the training labels. CV seg-
mentation was applied to SVI samples extracting streetscape view indices as the 
explanatory variables. We then trained ML models and achieved high accuracy in 
predicting the scores. We found a strong correlation between the predicted com-
plexity score and the density of urban amenities and services Point of Interests 
(POI), which validates the effectiveness of subjective measures. In addition, to test 
the generalizability of the proposed framework as well as to inform urban renewal 
strategies, we compared the measured qualities in Pudong to other five renowned 
urban cores worldwide. Rather than predicting perceptual scores directly from ge-
neric image features using a convolution neural network, our approach follows what 
urban design theory suggested and confirms various streetscape features affecting 
multi-dimensional human perceptions. Therefore, its result provides more interpret-
able and actionable implications for policymakers and city planners. 
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1. Introduction 

Urban design qualities such as the enclosure directly affect a person’s apprecia-
tion of a place (Ewing and Handy, 2009). Recently, with prevalence of Street View 
Imagery (SVI) data in environment auditing (Yin and Wang, 2016), computer vision 
(CV) have been widely applied to extract streetscape features, making the large-
scale urban scene understanding possible (Yin et al., 2015). However, studies are 
limited to the objective measures. Only the view index of individual features such 
as tree and building are analysed, while the viewers’ overall perceptions are ignored. 
Human perceptions have subtle relationships which cannot be fully represented by 
individual view indices nor a simple combination of them (Ewing and Handy, 2009; 
Lin and Moudon, 2010).  
Conversely, the “subjective measure” which refers to evaluative scores collected 
from surveys questions can capture more subtle relationships (Lin and Moudon, 
2010). It is more user centered (Naik et al., 2014, 2014), although the definitions of 
perceptual qualities are inconsistent across studies (Ewing and Handy, 2009). How-
ever, few studies have addressed subjective measures’ effectiveness in capturing 
more subtle perceptions using SVI data. 

To bridge the gap, we took Shanghai as an example and applies CV and ML to 
subjectively measure four perceptual qualities, namely the enclosure, human scale, 
complexity, and imageability. These perceptions have been identified important 
in affecting pedestrians’ behaviors, residences’ mode choices, and home buyers’ 
willingness to pay (Ma et al., 2021). Our work enriches subjectively-measured ur-
ban perception studies. It is also the first cross-study for global cities. Urban renewal 
implications are derived for policymakers based on the global comparison. Further-
more, we contribute to future studies by proposing a framework integrating AI ap-
plications with classical urban measurement frameworks.  

2. Literature Review 

2.1 Objective and Subjective Measures 
Street environment significantly affects people’s appreciation of a place, as well 

as residence’s physical activities, mode choice, and willingness to pay (Ewing and 
Cervero, 2010). Street qualities have been mostly measured using objective quanti-
ties such as building height, street width, and number of trees (Cervero and 
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Kockelman, 1997). However, physical features alone cannot represent people’s 
overall perception which have more subtle relationships (Ewing and Handy, 2009).  

Conversely, subjective measures often derive from interview and surveys. They 
explain people's behavior more completely, as behavior is mediated by the “cogni-
tive map” of the environment (Lynch, 1960). Conventional approaches relied on 
interview or telephone survey to collect people’s overall perception have problems 
(Ewing and Handy, 2009). First, the consistency and reliability of the operation can 
be questioned due to individual differences. Secondly, measurements based on sur-
veys is time-consuming and expensive. The low throughput method limits subjec-
tive measure’s application to larger geographic contexts (Naik et al., 2014). Third, 
the results are difficult to interpret, hence providing less instructive implications to 
policymakers (Lin and Moudon, 2010). 

Nevertheless, the subjective and objective measures could have been integrated. 
Ewing and Handy (2009) reviewed 51 subjective perceptual qualities from a pile of 
urban design literature. They statistically correlated subjective scores rated by ex-
perts for watching street view video clips, to the objectively-quantified elements 
like people and tree from field survey. They successfully operationalized to objec-
tively measure five seemingly subjective perceptions. 

2.2 Computer vision and machine learning in street measures 
Recently, new studies emerged to take the advantages of open-source big data 

and AI algorithms. First, SVI data covers a handful of cities and spreads to new 
cities rapidly since 2007, which can be used to measure street-level human eye 
views inaccessible from the bird view (Li et al., 2015). A few recent studies measure 
the built environment using SVIs. For example, Rundle et al. (2011) used Google 
SVI to manually audit neighbor environment. Later, with the advance of AI such as 
CV and ML, automatically extracting features from images became possible. Yin 
and Wang (2016) applied ML to measure visual enclosure from SVI. Their results 
showed that the ML algorithms performed well to recognize and calculate the sky 
areas, allowing the measurement to be done reproducibly. Other researches have 
measured pedestrian, trees, sky, building, façade etc., respectively (Chen et al., 
2020; Li et al., 2015; Ma et al., 2021). However, as discussed formerly, these ob-
jective view indices cannot represent viewers’ overall feelings with the street scenes 
(Qiu et al., 2021). 

Besides open-source SVI data, integrating crowdsourcing with AI has become 
viable to uncover large-scale public perceptions (Naik et al., 2014). Online data col-
lection allows greater number of participants to evaluate perceived qualities from 
images, largely increasing the accessibility of urban perception data (Naik et al., 
2014; Salesses et al., 2013). Naik et al. (2014) collected perceived safety online by 
asking participants to rank pairwise street photos. These preferences were converted 
to ranked safety scores and became the training data to train ML models to predict 
perceived safety score for 21 cities worldwide. The method was also applied to 
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investigate the correlation between urban appearance and neighborhood income as 
well as housing prices (Glaeser et al., 2018).  

Despite the effectiveness of subjective measures in incorporating more subtle 
human perceptions, most studies using SVI data are limited to objectively extracted 
visual elements. Little has been done to construct global maps of the subjectively-
measured perceptions for the many perceptual qualities identified by classical urban 
design studies, such as imageability and complexity (Ewing and Handy, 2009). 

Therefore, our work sets to enrich the subjective measures of urban perceptions. 
It contributes to analytical frameworks by extending classical urban design frame-
work with AI and big data (Fig. 1a). While Ewing and Handy (2009) relied on hu-
man labor to manually count physical features from video clips, we applied CV to 
extract the pixel ratios or counts of each important feature. While Naik et al. (2014) 
only mapped perceived safety score, we measured four important qualities identi-
fied by literatures in urban design and validate the scores with objective POI data. 
Furthermore, it is the first cross-study for several global cities with application of 
CV and ML which sheds light on urban renewal implications for global studies. 

 
Fig. 1 Analytical framework (a) based on literatures in urban design qualities; and (b) the selection 
of the four perceptual qualities and their contributing features 

3. Data and Methods 

3.1 Study area and data preparation 
Pudong District in Shanghai is the financial center of China. Since the housing 

reform in 1998, Pudong has become one of the most expensive and vibrant housing 
markets in China (Chen et al., 2020). An empirical analysis for the street quality for 
a city-wide Pudong would provide essential implications for urban renewal. The 
data includes (1) SVIs collected from Baidu Street View API, (2) POI data from 
DaZhongDianPing and AutoNavi Map, and (3) shapefile of road networks from 
Open Street Map (OSM). 
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3.2 Calculating subjective qualities 

3.1.1 Downloading Baidu SVIs 
SVIs were downloaded from Baidu Street View Static API with consistent cam-

era settings. The ‘heading’ was set using the street angle; image size was 600x300 
pixels. The FOV (the horizontal field of view) was 120 degrees. The ‘pitch’ which 
specifies the up or down angle of the camera was 0 degree. To ensure our training 
images would cover most urban area types, 300 images were randomly sampled 
across Shanghai region (Fig. 2). 

 
Fig. 2 Downloading Baidu SVIs (a) A typical SVI downloaded for this study. (b) The camera 
settings were controlled by “heading”, “FOV”, “pitch” and “resolution”. (c) SVI Training Samples. 

3.1.2 Collecting public perceptions as training labels 
To collect people’s preferences on street scenes as the training labels, we devel-

oped an online questionnaire platform where people can select the image preferred 
in pairwise comparisons regarding the four perceptual qualities (Fig. 3a). During a 
one-week period, we collected 3,120 valid entries from 23 volunteers who are 
mostly architecture students in Shanghai. In average, an image was compared to 10 
other images, which is sufficient to lead the results converge (Naik & et al, 2014).  

These preferences were then translated to ranked scores with TrueSkill Algo-
rithm (Microsoft, 2005) which has also been applied to rank perceived safety (Naik 
et al., 2014). The ranked scores were normalized into 0-10 scale. People seemed to 
favor streetscapes with less sky exposure, more trees, and more pedestrians (Fig. 
3b). These 300 labelled images become our training data. 
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Fig. 3 Collecting the Collaborative Image of Streetscape with An Online Survey Platform. (a) Our 
online survey system asking participants to click on one of pairwise SVIs in response to evaluative 
questions. (b) High score, low score example images, and the histogram of score distribution, for 
each of the four perceived street qualities. 

3.1.3 Physical feature classification 
Pyramid Scene Parsing Network (PSPNet) is an image segmentation algorithm 

to produce reliable results on the scene parsing task (Zhao et al., 2016). We used 
PSPNet to extract and calculate the pixel ratios of individual features as view indices 
from SVIs. 35 kinds of streetscape elements have been detected (Fig. 4a). For the 
quantity of cars, peoples, signs, street furniture, the pixel ratio makes less sense, 
therefore, we applied MASKRCNN (He et al., 2017) to count the amounts (Fig. 4b). 

 
Fig. 4 CV Segmentation Results (a) Pairwise PSPNet semantic segmentation results with its raw 
input (b) Mask R-CNN instance segmentation results counting objects 

3.1.4 Predicting subjective scores 
We then applied several ML algorithms such as K-nearest neighbors (KNN), 

support vector machine (SVM) and random forest (RF) to predict the four percep-
tions. Mean Absolute Error (MAE) was set as the loss function, resulting in best 
models with an average MAE of 1.83, which is acceptable. With a scoring system 
of 0-10, an error of 1.83 will not alter the interpretation of a quality. We then applied 
the best performance models to all the downloaded 14,274 Baidu SVIs and derived 
the four subjective scores for Pudong Area. 

3.3 Correlation test and result validation 
Meanwhile, a logistic regression analysis was conducted among four qualities to 

check their correlations. The result shows that the degree of ‘imageability’ is sig-
nificantly and positively correlated with ‘enclosure’ and ‘complexity’ (Fig. 5a). Fur-
thermore, we crossed reference complexity score to the POI density (using food & 
beverage, entertainment, and recreation). Higher complexity score is correlated with 
more POIs, indicating the predicted complexity score effectively captures the im-
pacts of urban amenities and services (Fig. 5b). 



The 3rd International Conference on Computational Design and Robotic Fabrication 

July 3-4, 2021 

 7 

 
Fig. 5 Validation of results using (a) correlations test between four scores and (b) cross-reference 
to actual POIs density (c) Cognitive maps of four perceptual qualities 

3.4 Global comparison with other cities 
To validate the generalizability of our framework and to inform what kind of 

environment facilitate urban innovation, we selected five renowned innovative dis-
tricts, namely Cambridge Kendall Square, London Knowledge Quarter, Manhattan 
Wall Street, San Francisco Downtown and Seattle South Lake Union as the bench-
mark. The scores of Zhangjiang High-Tech Park were compared to that of the five 
benchmarks. Implications for urban design and renewal for Pudong and Zhangjiang 
were discussed based on comparison results. 

4. Results and Findings 

4.1 Spatial distribution of perception qualities 
Fig. 5c provides the first comprehensive cognitive maps for Pudong District. The 

distributions of four perceptual qualities are heterogeneous, with downtown area 
(i.e., Lujiazui) conceived highest. The result indicates that when considering allo-
cating renewal resources, more could be invested in the periphery residential areas 
and industrial parks where street qualities are conceived low, but with large resi-
dential population and employments, such as Zhangjiang High-Tech Park.  
 

4.2 Comparison with other cities 
Pudong’s street qualities fall behind global best practices. Zhangjiang has the 

lowest average score compared to other five best practices (Fig.6b), indicating more 
urban design implementations could be considered to improve the overall 
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appreciation of street environment, as good street environment facilitate innovation.  
Second, five global districts have smaller variance in scores, while the scores in 
Zhangjiang are highly polarized, implying its uneven development (Fig. 6a). It sug-
gests future study to investigate whether such uneven distribution have posed ineq-
uitable issues to specific population segments (Salesses et al., 2013). Last, the result 
confirms our method is applicable to a wide range of regions. 

  
Fig. 6 Comparing six cities’ perceptual qualities. (a) Score distributions (b) Averaged scores 

4.3 Cross-reference with zoning metrics  
To provide actionable policy suggestions, we cross-referenced perception scores 

with objective metrics of urban form and density, such as the average block size and 
floor area ratio (FAR) (Fig. 7). Zhangjiang has the widest roads but the lowest den-
sity measured, which explains its lowest perceived enclosure, since lower building 
heights and wider streets lead to less enclosure (Yin and Wang, 2016). Less enclo-
sure limits the neighborhood walkability and results in less walking behaviors, 
which is confirmed by the pedestrian counts from SVIs. 
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Fig. 7 Comparing (a) urban fabrics and block metrics, (b) development density and metrics 

5. Conclusion 

5.1 Effectiveness of subjective measures using SVI and AI 
While this method may not immediately replace the long-existing techniques in 

urban environment auditing, it offers many merits. For example, being closely re-
lated to the pedestrians’ perspective, low-cost, requesting nothing from proprietary 
software or methods, and is commonly applied to where SVI dataset is available.  
The proposed method provides a useful alternative for planners and policymakers.  

First, the cross-study of six global urban cores including Pudong district confirms 
the generalizability of our proposed framework. The method is reproducible and 
consistently predict perceptions from open-source SVI dataset that widely exists. 
Second, subjective measures capture more comprehensive and subtle human per-
ceptions than using individual view indices. All the four important human percep-
tions suggested by urban design theory have been operationalized and the accuracy 
rates have been improved comparing to prior works (Ewing and Handy, 2009). 
Third, although measured from simply images, perceptual scores capture many ur-
ban space qualities and characteristics that traditionally viable through objectively 
measured urban metrics. For example, the FAR, street width, building height, block 
size, and amenity density. We find a significant correlation between the complexity 
score and the POI density, as well as the enclosure with urban form and density 
metrics including FAR and street width. While the objective urban metrics must be 
measured using massive POIs and urban 3D model data with complicated work-
flows with ArcGIS and Rhino, our framework can stand alone without any licensed 
programs and software. All information needed are open-source. Therefore, com-
pared to objective measures of urban form, our proposed framework is more acces-
sible and higher throughput. Lastly, the cross-study indicates the polarized and un-
even urban development in Pudong District. Unlike other benchmark cities, Pudong 
have large variances and lower average scores within all four perceptions, which 
suggests more equable allocation of urban design efforts and investment resources.  

5.2 Limitations 
First, our segmentation only used pre-trained models. Future studies could train 

specific models to fulfil more tailored tasks, such as to extract façades and windows 
which significantly affect many perceptions. Second, our training data was limited 
by the scarce of volunteer raters, and raters were not randomly selected. Third, fur-
ther investigation could be done to address the divergence and coherence between 
subjective and objective measures of urban perceptions.  
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