
EasyChair Preprint
№ 12798

Enhanced Financial Data Generation using
Recurrent Neural Networks within Variational
Autoencoders: a Sector-Based Analysis

Parth Garg, Pulkit Sharma and U M Prakash

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 28, 2024

Enhanced Financial Data Generation using

Recurrent Neural Networks within

Variational Autoencoders: A Sector-based

Analysis

PARTH GARG PULKIT SHARMA Prakash U M

 Department of Computing Department of Computing Department of Computing

Technologies, School of Computing, Technologies, School of Computing, Technologies, School of Computing,

 SRM Institute of Science and SRM Institute of Science and SRM Institute of Science and
Technology, Chennai, India Technology, Chennai, India Technology, Chennai, India

pg6945@srmist.edu.in ps3066@srmist.edu.in prakashm3@srmist.edu.in

Abstract—This study proposes a new generative model

for quarterly financial data time series that is based on a

variational autoencoder (VAE). The program provides

financial data for a synthetic firm in a certain industry

throughout a year, comprising four quarters of data. This

technology employs a recurrent neural network-based

VAE to successfully capture both multivariate

distributions and temporal dependencies in the data.

Compared to classic models such as the Multivariate

Normal Monte Carlo Model and the Multivariate

Gaussian State Space Model, our model's synthetic

samples are more realistic, with higher visual fidelity and

lower discriminative scores. In addition to the basic

model, the derivative model has a conditional channel

that generates samples with preset future performance.

The user-friendly interface of our product makes it

simple to utilize. Analyzing the patterns and features of

synthetic samples can reveal significant information on

alpha factor trading and risk management measures.

Furthermore, applying the model to various datasets has

the potential to improve these findings even more.

Keywords—Generative model, Variational autoencoder

,Financial data simulation, Time series analysis ,Recurrent

neural network (RNN)

I. INTRODUCTION

Analysing the time series of fundamental company data is

essential for internal and external analytics, as well as traders

and risk managers. In spite of the useful information it

provides, such data are often limited, such as data scarcity

and confidentiality concerns. The creation of synthetic

financial fundamental data sequences with similar statistical

properties is an effective way to address these gaps and

weaknesses in actual data. These synthetic data can serve a

number of purposes, such as alleviating the lack of training

data, enabling the development of data-dependent products

and services, and revealing hidden characteristics that offer

valuable market insights.

Traditional methods for generating synthetic data usually

rely on stochastic sampling based on known distributions, the

Monte Carlo method is a well-known example. Although

these methods are simple and interpretable, they often do not

capture the intricacies of real-world data complexity. On the

other hand, deep learning-based generative models possess

strong unsupervised learning capabilities and demonstrate

exceptional ability to generate complex entities, such as

images, videos, text, and music. These models use deep

neural networks to learn patterns and structures within

training data. This knowledge can then be used to produce

new and realistic data samples. Generative Adversarial

Networks (GANs),Variational Autoencoders (VAEs), and

autoregressive models such as Transformers are examples of

deep-learning generative models with different frameworks

and mechanisms, resulting in outputs with distinct

characteristics.

Synthetic data production for time-series data is

challenging owing to the temporal patterns in the data. A

generating process must account for multivariate

distributions and temporal interactions between features.

Recurrent Neural Network (RNN), a specialized Neural

Network architecture designed for sequential data

processing, has emerged as a strong contender. RNNs, unlike

typical neural networks, have an internal memory that

maintains information from past steps, enabling them to

successfully capture temporal correlations and patterns. As a

result, RNNs are quite useful for time series analysis. Our

new model uses Variational Auto-Encoders (VAEs) and a

Recurrent Neural Network (RNN) architecture to simulate

quarterly financial data sequences for a fictitious company.

Quarterly financial data collected over a one-year period

demonstrate higher fidelity when compared to baseline

models using traditional methodologies, as evaluated

qualitatively and statistically in our trials. We expand our

model by using next-quarter return performance as a

conditional channel, yielding intriguing results. We matched

our model with historical financial data from real-world

SP500 companies and created a user interface for our

solution.

II. RELATED WORK

The use of deep generative models with time series data is a

relatively recent subject. Creating time series data has many

practical applications. Time-series data, which consists of a

succession of observations gathered at regular intervals

throughout time, is essentially three-dimensional. Current

approaches aim to identify the best combinations of

advanced network architectures, including Recurrent Neural

Networks (RNN) and Convolutional Neural Networks

(CNN), capable of processing this three-dimensional data,

and deep learning-based generative models, primarily

focused on Generative adversarial networks (GANs).

 TABLE I. lists generative models and associated network types from the

literature.

In 2014, Fabius et al. developed a sequential-specific

Variational Autoencoder (VAE). Their model incorporates

RNNs to enhance the VAE architecture. The encoder

comprises recurrent connections and uses the RNN's final

encoded state to represent the input sequence.

The approach is effective at learning latent

representations and creating organized sequences. Fabius et

al. demonstrate this by experimenting with MIDI data for

music production [5].

Chung et al. (2015) introduced the Variational Recurrent

Neural Network (VRNN) model. This novel approach

incorporates a VAE into each time step. The VAEs are unique

in that they are conditioned on the prior RNN state variable

ht−1. Unlike a normal VAE with a multivariate Gaussian

prior, the VRNN allows for an isotropic Gaussian

distribution where the mean and variance are related to the

preceding state. The VAE's strategic extension captures

temporal intricacies in sequential data, ensuring the model

understands its underlying structure [1].

Mogren (2016) introduced the C-RNN-GAN model,

which is ideal for generating classical music data. In this

approach, deep Long Short-Term Memory (LSTM) networks

are used. These networks take randomly generated noise as

input and process it to learn informative patterns. The learned

patterns are then passed through fully connected layers to

generate new sequential data samples.. In an adversarial

training setting, a discriminator assesses both generated and

real music samples. This method allows for the construction

of diverse musical compositions with different tonal

complexity and intensity [8].

Esteban et al. (2017) created the Recurrent Conditional

GAN (RCGAN), which focuses on multidimensional time-

series data creation. RCGAN uses RNNs for both generator

and discriminator functions, as well as a conditioning

mechanism to direct the generation process. By conditioning

on auxiliary information, RCGAN generates time series data

with specified properties while retaining temporal coherence.

This element is useful for generating privacy-preserving

eICU data [4].

Donahue et al. (2019) introduced WaveGAN, a model for

generating raw audio waveforms with GANs. WaveGAN's

generator uses CNNs in both the generator and the

discriminator to transform random noise into audio

waveforms using transposed convolutions. At the same time,

the discriminator distinguishes between genuine and

produced sounds. This architectural method allows for the

creation of high-fidelity audio samples by directly collecting

complicated waveform elements [3].

TimeGAN (Yoon et al., 2019) is widely regarded as the

most advanced model for generating time-series data. Yoon

et al. (2019) propose a novel framework that combines the

freedom of unsupervised learning with the control of

supervised training. TimeGAN ensures that the dynamics of

the training data are maintained during sampling by

concurrently optimizing a learnt embedding space with

supervised and adversarial objectives. The architecture is

made up of four main components: an embedding function,

a recovery function, a sequence generator, and a sequence

discriminator. TimeGAN's technique captures feature

encoding, representation creation, and temporal evolution

simultaneously [9].

A more recent technique, TimeVAE (Desai et al., 2021),

uses CNN encoders and decoders with specified trend-

representing blocks to balance complexity and compatibility

[2]. This model uses a generative distribution with the form

pθ(X | z) = N(µ,I). Initially considered for adaptation, an

analysis of TimeVAE's code indicated that its generative

method resembled reconstruction rather than direct sampling

from N(0,I). This departure called into question the model's

assumptions, which we eventually abandoned.

In our proposed model, we draw inspiration from

Recurrent VAE (Fabius et al., 2014) [5], but we enhance it

with a deeper network topology that includes two layers of

RNNs. While the Recurrent VAE has found applications in

music composition and text/speech production tasks, we

believe our model is a unique technique to producing time

series data in economics and finance.

III. METHODOLOGY

In this part, we describe the approach used to create and build

a generative model for synthetic financial data using a

variational autoencoder (VAE) and a recurrent neural

network (RNN) architecture. The technique begins with a

review of VAEs, covering its underlying concepts and aims,

and then goes on to explain the model architecture and

Model /

Network

CNN RNN

GAN C-RNN-GAN

(Mogren, 2016),

C-RNN-GAN

(Mogren, 2016),

 WaveGAN(Don

ahue et

al., 2019)

RCGAN (Esteban

et al., 2017),

Time GAN (Yoon

et al., 2019)

VAE TimeVAE

(Desai et al.

2021)

Recurrent VAE

(Fabius et al.,

2014)

VRNN(Chu g et al.,

2015)

training procedure in depth. We also cover the expansion of

the VAE architecture to include conditional generation tasks

via Conditional Variational Autoencoders (CVAEs) and the

construction of the loss function to maximize model

performance.

A. VAE

1)Overview

Variational Autoencoders (VAEs), first presented by Kingma

and Welling in their 2013 publication "Auto-Encoding

Variational Bayes," are a strong generative modeling system

that combines autoencoder and probabilistic modeling ideas.

Unlike typical autoencoders, which provide point estimates,

the VAE encoder produces the distribution of the latent

embedding, allowing for the modeling of complicated data

distributions and exploration of latent space [7].

The main objective of a Variational Autoencoder (VAE) is to

produce samples that accurately capture the statistical

distributions inherent in the original dataset, which

comprises N independent and identically distributed (i.i.d.)

continuous or discrete variables denoted as x. This entails

describing the unknown probability function pθ(x). VAE

operates under the assumption that the observed data is

generated by a latent vector that is independent of the data

itself. The generative process unfolds in two stages. Firstly, a

prior distribution pθ(z) is employed to generate the latent

variable z, which is then utilized alongside a generating

distribution pθ(x | z). to construct the data point x .Though

the specific expressions and probabilities of the

aforementioned pθ(z) and pθ(x | z). may not be explicitly

known, we operate under the assumption that they exhibit

differentiability concerning both the parameters θ and the

latent variable z.

The prior pθ(z) is often unclear. To solve this, the VAE

encoder introduces an approximation of the posterior

distribution: qϕ(z) ≈ pθ(z | x). The encoder models the

posterior probability distribution qϕ(z), while the decoder

models the conditional probability pθ(x | z).During training,

the posterior is regularized to fit this chosen prior. This

regularization combines a posterior variance approximation

of the Kullback-Leibler (KL) divergence with a

predetermined prior loss function. Using a predetermined

prior enables for simple direct sampling of a concealed

representation of the prior distribution. The decoder can

generate synthetic data distributions that embody the

statistical properties of the original data set from the latent

representation. In this way, VAEs allow the exploration of

latent space and the generation of new data samples that

conform to the data distribution.

In our case, we assume that the prior distribution is a standard

isotropic multivariate Gaussian pθ(z) = N(0,I), and the

inferred posterior distribution is a multivariate Gaussian with

diagonal covariance qϕ(z|X) = N(µϕ(X),diag(σϕ2(X)). The

encoder takes X as input and outputs two vectors µϕ(X) and

σϕ2(X) in Rd, where d is the dimensionality of the latent space.

We let the output distribution be an isotropic multivariate

Gaussian, pθ(X|z) = N(µθ,diag(σθ2(z))). The decoder takes z
as input and outputs the vectors µθ and σθ2(z) in Rs. We also

introduce a lower bound for σθ2(z), ensuring that the scale for

all variables must exceed a certain threshold to avoid an

overly narrow output distribution.

In this scenario, we make the assumption that the prior

distribution follows a normal isotropic multivariate

Gaussian, denoted as pθ(z) = N(0,I), while the inferred

posterior distribution is a multivariate Gaussian with

diagonal covariance, expressed as qϕ(z|X) =

N(µϕ(X),diag(σϕ2(X)). The encoder takes X as input and

generates two vectors µϕ(X) and σϕ2(X) in Rd, where d

represents the dimensionality of the latent space. We assume

an isotropic multivariate Gaussian distribution for the

decoder, denoted as pθ(X|z) = N(µθ,diag(σθ2(z))). The

decoder accepts z as input and outputs the µθ and σθ2(z) in Rs

.To prevent an excessively narrow output distribution, we

enforce a lower bound on σθ2(z), ensuring that the scale for

all variables remains above a certain threshold.

2) Conditional VAE

Conditional Variational Autoencoders (CVAEs) extend the

basic VAE framework to address conditional generation tasks

where both input data and additional conditions are

incorporated into the generation process. CVAEs are

particularly useful in scenarios where the generated data is

influenced by specific attributes or contexts, enabling

controlled and targeted data synthesis.

In a CVAE, the latent representation z is conditioned not only

on the input data x, but also on additional conditioning

variables y representing the specific conditions. The prior

distribution becomes pθ(z | y), where y represents the

additional conditions. The posterior and generative

distributions become qϕ(z | x,y) and pθ(x | z,y). The CVAE

loss function extends the original VAE loss by including the

conditioning variables in both the prior and posterior

distributions.

3) Loss Function

The CVAE loss function, also known as the obvious inferior

loss function (ELBO), can be written as.:

Our training loss function follows the previously defined

ELBO loss function with one modification. We use a β
weight on the reconstruction error as a hyperparameter,

which serves to increase or decrease the emphasis on the

reconstruction loss relative to the KL divergence loss

between the approximated posterior q(z|X) and the prior p(z).

This variation is also known as the beta-VAE (Higgins et al.,

2016) [6].

Lθ,ϕ = −Eqθ logpϕ(X | z) + DKL(qθ(z | X) ∥ pϕ(z)) (1)

 Lθ,ϕ = −Eqθ logpϕ(X | z,y) + DKL(qθ(z | X,y)∥pϕ(z | y)) (2)

 Lθ,ϕ = −β × Eqθ logpϕ(X | z) + DKL(qθ(z | X)∥pϕ(z)) (3)

Lθ,ϕ = −β × Eqθ logpϕ(X | z,y) + DKL(qθ(z | X,y)∥pϕ(z |

y)) (4)

B. Model Architecture

The encoder and decoder components are built with a two-layer

recurrent neural network (RNN) architecture. The encoder

receives a 3-dimensional array with dimensions s = N ×T ×D .
N denotes the array size, T represents the number of time steps,

and D is the number of function dimensions.

The Encoder module starts with an initial RNN layer RNN 1
that processes the input signal and produces hidden state

representations. This intermediate output is then fed into a

subsequent RNN layer RNN 2, which further refines the hidden

state information to produce a more compact and meaningful

representation. The final hidden state hidden n obtained from

RNN 2 is reshaped to fit the batch size and embedding

dimension embed dim, thus serving as the encoded

representation of the whole input sequence. The size of the

hidden dimension is twice the size of the embedding dimension.

The Decoder component mirrors this architecture by first

transforming the encoded representation using a linear layer fc
to prepare it for the decoding process. The modified encoding

is then elongated along the time dimension to align with the

length of the original sequence. This elongated tensor is then

passed through the initial RNN layer, denoted as RNN 3, within

the decoder, followed by another RNN layer labeled as RNN

4.The final hidden state output from RNN 4 is used to predict

both the mean and log scale of the generated sample’s

multivariate distribution.

In the training stage, the encoder transforms the data into two

latent representation vectors, acting as parameters for a

multivariate Gaussian distribution. The loss is computed by

utilizing the encoded parametric distribution of the latent

representation and the decoder distribution of the observations

conditioned on the latent representation. In the generation

process, a latent vector z is sampled from a standard isotropic

multivariate Gaussian \(pθ(z), concatenated with the

conditional channel y (if present), and subsequently decoded to

yield the isotropic multivariate Gaussian distribution pθ(X|z)

for the sample. A synthetic data point X
ˆ

is then sampled from

the generative distribution.

Figure 1:

Model Diagram

C. Baseline Models

We have chosen two traditional simulation methods to serve

as benchmark baseline models. It’s important to note that the

Multivariate Gaussian Monte Carlo model (MNS) ignores

temporal relationships, while the Multivariate Gaussian State

Space model (MGSSN) includes them.

• Multivariate Gaussian Monte Carlo Model: This

model operates under the assumption that the data adhere

to a multivariate Gaussian distribution, characterized by

the mean vector (µ) and covariance matrix (Σ). These

parameters delineate the properties of the distribution,

facilitating the generation of data points through

sampling. The process involves the selection of random

samples (x) from the Gaussian distribution via Monte

Carlo sampling.

• Multivariate Gaussian State Space Model: The

MGSSN assumes that observed data (y) is derived from

an underlying latent state (x) through a linear Gaussian

relationship. This model includes two key equations: the

state transition equation (xt+1 = Axt + wt) and the

observation equation (yt = Cxt + vt). Here A is the state

transition matrix, C is the observation matrix, and wt and

vt represent process and observation noise, respectively.

The latent state captures the underlying dynamics, while

the observation noise accounts for discrepancies between

actual observations and model predictions.

IV. MODEL

Using the methods described above, we created a synthetic

financial data generator capable of producing sector-specific

synthetic financial data time series for four quarters of a year.

This was accomplished by training individual sector-specific

models using corresponding real historical data from

companies within each respective sector. This process

yielded nine fitted VAE (CVAE) models, with each model

representing a distinct sector.

In the next experiment, we concentrated on determining the

efficacy of one of these models: Consumer, Non-cyclical. We

presented cumulative density function charts for both the

training and validation datasets to evaluate the calibration. To

assess the quality of the generated data, we compared

samples generated by our model to those generated by

baseline models. Furthermore, we explored whether our

reconstruction technique increased feature predictability

through denoising by comparing the efficacy of stock

selection with original and rebuilt features. We also expanded

our model to include the next quarter's return level and a

conditional feature. This addon enables for the creation of

samples with preset future performance characteristics.

 We used Bloomberg to gather five years of historical

quarterly financial data from 503 firms across nine sectors of

the S&P 500 Index. Yahoo Finance provided historical

closing prices for each firm one day before and after the

quarter's reporting date, which were then utilized to compute

quarterly returns. Every firm was issued a sector label. The

distribution of businesses across industries is as follows:

TABLE II. COMPARISO NUMBER OF BUSINESSES IN EACH INDUSTRY

Sector Number of

Companies

Consumer, Non-cyclical 112

Financial 91

Industrial 68

Consumer, Cyclical 63

Technology 59

Communications 34

Utilities 30

Energy 26

Basic Materials 20

For our project, we selected eight fields: Total Debt-to-Total-

Capital, Price-to-Book Ratio, Price Earnings Ratio (P/E),

Total Asset Growth Rate, Revenue Growth Rate, Return-on-

Community-Equity, Return-on-Assessment, and Gross

Margin [1]. These fields were chosen for their ability to

provide insight into a company’s leverage, valuation, growth,

profitability, and market relevance as potential factors

influencing future stock returns.

Exploratory data analysis revealed weakly correlated, highly

skewed variables with many extreme values (see Figure 2).

Therefore, several preprocessing steps have been performed

to address these characteristics. First, we treated left-skewed

variables (Total Debt to Total Capital, Price to Book Ratio,

and Price Earnings Ratio (P/E)) by replacing non-positive

values with a small positive constant before applying a

logarithmic transformation. Second, we used winsorization to

replace extreme negative and positive values with the 2nd and

99th percentiles of the corresponding quarter’s values given

the presence of extreme values in all fields except Price to

Book Ratio and Gross Margin. We then partitioned the full

dataset into nine separate datasets, each containing companies

from a specific industry. We standardized the data in each

quarter’s cross-section within each separate dataset. For each

specific sector and quarter, the values of each field across

firms were normalized to have a mean of zero and a standard

deviation of one. This standardization process serves two

purposes. First, it facilitates deep neural network learning and

eliminates market dynamics influence. To allow for future

reverse transformations, we recorded the mean and standard

deviation time series for each sector. Missing values will be

imputed to zeros.

Figure 2:The impact of log transformation on exploratory

data analysis.

Each sample in our datasets represents a company's financial

time series across four consecutive quarters within a single

year (T = 4, D = 8). An i.i.d. dataset is created by collecting

distinct, non-overlapping samples from various firms. The

Basic Materials dataset covers five years of data for twenty

organizations, resulting in a total sample size of 20 × 5 = 100.

This strategy has both benefits and drawbacks. While it

considerably expands our sample size, it overlooks any

potential inter-year relationships within the same

organization.

TABLE III. Statistics of the CSMNC dataset before normalization and

missing value imputation

A. Evaluations

1)Calibration

We evaluate our model's calibration effectiveness using the

following method. Our data collection is first separated into

two sets: a training set and a test set, with the training set

including data from 80% of the organizations. The model

trained on the training data produces multivariate

distributions. We next proceed with the following stages on

both the training and test sets.

1. Using the decoded generative distributions from z,

calculate the average CDF (cumulative distribution function)

of data for each field and time step.

2. To mimic the distribution of average CDFs, sample a z

many times and repeat step 1.

The average CDFs are determined using the equation below.

 (5)

Here, i represents each observed sample in the data sets, and

pθ(xs,t | z) denotes the marginal distribution of the field s at

time step t according to the generative distributions. When

ideally calibrated, the average cdfs should have a uniform

distribution.

Figure 2 shows the histogram and cdf plots representing the

distribution of the 1000 simulated average cdfs. The

observed pattern suggests that for the majority of features,

the distributions of the average cdfs for both the training and

test sets closely resemble uniform distributions. This

alignment indicates effective calibration of our model and

suggests minimal overfitting. However, an interesting

observation emerges: in the first and last steps, the average

cdfs of some fields cluster around 50% for both the training

and testing sets. The reason for this overconfidence in the

first and fourth quarter data generation remains unclear.

Further investigation is warranted to uncover the reasons.

Figure 3: Average cdfs graphs

2)Fidelity

The final model is trained using the entire data set. We

compare the fidelity of our model's produced synthetic

samples to two baseline models: the Multivariate Gaussian

Monte Carlo Model (MNS) and the Multivariate Gaussian

State Space Model (MGSSM). There are two parts to the

fidelity metrics. First, we examine the visual similarity

between the generated synthetic samples and the observed

real samples, both in density plots with time-flattened

marginal distributions and in TSNE plots with the time

dimension reduced to a two-dimensional representation.

Second, we apply discriminatory scoring. Specifically, we

use supervised learning to build complex classification

models to distinguish between actual and synthetic data, with

the goal of achieving an accuracy of around 0.5 on the

withheld dataset. A number closer to 0 implies greater

performance, implying that the created data is closely related

to the original data. The three classifiers used are Support

Vector Classifier (SVC), Gradient Boosting Machine

Classifier (GBM), and Random Forest Classifier (RF).

Figure 3 depicts density plots that demonstrate broad

distribution statistics, as well as TSNE plots that indicate

temporal trends. Our findings show that our model provides

samples with superior visual authenticity than the classic

MNS and MGSSM models. The basic models struggle to

capture complicated distributions since they both rely on

preset Gaussian distributions. In contrast, our model

efficiently captures temporal patterns, which is difficult for

baseline models. The MNS model overlooks temporal

patterns, and MGSSM's simplistic linear Gaussian

connection does not correctly capture them, as demonstrated

in the TSNE charts. However, it is worth noting that the

synthetic data points show less dispersion than the actual

observations, implying some degree of overconfidence.

Addressing this problem is an area of future research.

 Count Mean Std Min 25% 50% 75% Max

Log Total Debts to
Total Capital

2165 3.69 0.80 0.09 3.52 3.82 4.15 5.10

Log Price to Book
Ratio

2151 1.84 1.14 -0.62 1.10 1.67 2.42 8.83

Log Price

Earnings Ratio

2178 3.21 0.61 1.47 2.75 3.18 3.56 5.72

Total Assets

Growth Rate

2204 1.95 6.39 -29.3 0.89 0.81 3,64 38.3

Revenue Growth
Rate

2208 2.01 10.9 -53.6 2.41 1.87 6.71 57.4

Return on

Common Equity

2131 35.8 62.1 -46.9 10.6 19.6 35.7 758

Return on Assets 2192 8.44 7.10 -29.4 4.06 7.20 12.4 35.9

Gross Margin 2080 48.2 21.9 -9.47 32.4 49.9 66.0 98.6

In terms of discriminative scores, our model greatly

outperforms the baseline models. The VAE model has mean

and maximum discriminative scores of 0.33 and 0.37,

compared to 0.46 and 0.48 for MGSSN and 0.45 and 0.47 for

MNS. The table below shows detailed results. Despite the

inherent unpredictability in the sample and generating

processes, the overall advantage is clear. The discriminative

score, while much better, remains unsatisfactory. The system

achieves more than 80% accuracy in discriminating between

phony and real data, highlighting the complexities of market

modeling.

Figure 4: Synthetic sample fidelity.

TABLE IV. Metrics for discriminating between classifiers and models

Classifier / Model VAE MNS MGSSM

Support Vector

Classifier

0.3036 0.4232 0.4241

Gradient Boosting

Machine

0.3304 0.4509 0.4777

Random Forest

Classifier

0.3661 0.4732 0.4732

Max 0.3661 0.4732 0.4777

Mean 0.3333 0.4509 0.4583

3)Utility

Encouraged by the idea that "the bottleneck mechanism

inherent to VAEs, connecting the encoder and decoder,

functions to remove noise from the input, potentially

enhancing subsequent tasks like prediction” (Desai et al.,

2021) [2], we designed an experiment to predict next-quarter

stock returns using both the original fundamental factors (the

eight fields we selected) and their reconstructed counterparts.

In contrast to the generative process, the reconstruction phase

involves decoding the encoded zmeani to obtain E[X
ˆ

i],

resulting in reconstructed data that closely resemble the

observations. Although there is no explicit mathematical

grounding, some proponents suggest that the reconstructed

samples represent denoised versions of the original data.

Specifically, we compared the forecasting abilities of the

original and denoised factor exposures for the testing

timeframe (2018Q2 to 2023Q1). Within each quarter of this

timeframe, our procedure unfolded as follows. First, we

trained an ordinary least squares (OLS) regressor using the

factors from the previous quarter and the corresponding

returns from the current quarter. Subsequently, we employed

the trained regressor to predict returns for the subsequent

quarter based on the factor exposures of the current quarter.

Our evaluation involved comparing results obtained using

both the original factor exposure data and the reconstructed

factor exposure data. Evaluation metrics include the

information coefficient (IC), information coefficient

information ratio (ICIR), rank information coefficient

(RankIC), and backtested cumulative returns from the

strategy of holding the top 20% stocks with the highest

predicted returns every quarter.1 It is essential to note that the

data used for evaluation are in-sample.

The subsequent table 5 and figure 4 display the performance

outcomes. In essence, our experiment did not uncover

evidence that reconstruction significantly enhances the

efficacy of financial factors. All metrics indicate better

predictability of the original data than the reconstructed data.

Figure 5: Cumulative return of factor-based stock

sefactors v.s. reconstructed factors lection strategy,

original factors v.s. reconstructed factors.

TABLE IV. Stock return productivity metrics, original factors v.s.

reconstructed factors

Metrics / Factor Original Reconstructed

Average IC 0.1362 0.0960

Negative Percentage 21.05% 36.84%

Average RankIC 0.1404 0.0943

Negative Percentage 15.80% 31.58%

ICIR 0.7518 0.5585

B. Incorporating Conditional Features

Whether and how do one-year quarterly fundamental

characteristics differ between firms that succeed and those

that underperform in the following first quarter? To support

this research, we add the Return Rank as a conditional label,

allowing us to train a conditional VAE capable of producing

synthetic samples suited to certain future performance

conditions. The Return Rank is calculated by ranking each

company's relative next-quarter stock return on a given date

into three categories: outperforming (return in the top 20%

among sector peers), underperforming (return in the bottom

20% among sector peers), and neutral (all other cases).

A preliminary look at the marginal distributions of each

sample at different quarters offers interesting results. Figure

7 indicates that changes in basic factor patterns between

cases of differing rankings are rather minor, consistent with

the efficient market hypothesis. However, it is clear that

outperforming synthetic stocks display far higher growth

rates in both revenue and total assets than underperforming

synthetic stocks. This divergence gets even more evident as

we look at more recent historical times. This finding shows

that current revenue and total asset growth rates may be

useful markers for projecting next-quarter success.

Figure 6: Plots showing distribution density across

C. Product

Finally, we finished the product development phase of our

simulator by training two VAE and CVAE models for each of

the nine sectors. This product allows customers to enter a

sector, a certain year, and a return tier as inputs. The simulator

calls the appropriate model (VAE when the return tier is

undefined and CVAE when specified) for the selected sector.

The algorithm randomly selects a labeled or unlabeled latent

vector to create a (T ×D = 4×8) sample with a 4-quarter

sequence of the eight financial variables. This sample is then

re-transformed (including normalization and log

retransformations) using the recorded means and standard

deviation data table for the specified sector and year.

Our Synthetic Financial Data Generator has a user-friendly

interface based on the Streamlit architecture. Users may view

both the produced data table and a line graph representation of

their single sample. The interface also allows you to produce

and export a dataset with several samples in CSV format. This

capability is very valuable for users who want to undertake

more population characteristic research and need a collection

of synthetic data.

V. LIMITATIONS AND FUTURE WORK

A clear alternative to individually modeling each sector by

training multiple models on sector-specific datasets is to

develop a unified model using the entire dataset and

incorporating the sector as a conditional channel. However, due

to time constraints, we did not explore this approach or compare

it with the aforementioned methodology.

Although we have evaluated one of the primary models, it is

imperative to emphasize that future evaluations should

encompass both the conditional and sector-specific models.

In summary, our study undertook a pertinent yet exploratory

experiment aimed at replicating a subset of domains, utilizing a

relatively modest network and a limited number of

organizations. We incorporated a single conditional channel for

control. While our model yielded acceptable results, it fell short

in some aspects, including overconfidence and elevated

discriminative scores. We anticipate that an expanded and

refined model, trained on a larger dataset, will afford greater

capability and yield more robust commercial applications and

economic insights. This envisioned future endeavor aligns with

our objective of enhancing the model's performance and

broadening its scope of application.

VI. CONCLUSION

In this endeavour, we adopted a distinctive methodology to

generate synthetic financial data, employing a temporal

variational autoencoder (VAE) framework. Our model,

designed to generate quarterly financial data sequences for a

fictitious entity within a specific industry, fulfills various

objectives, including data-driven engineering and market

research. To capture the complex interplay of multivariate

distributions and temporal dependencies inherent in financial

time series data, our approach integrates recurrent neural

networks (RNNs) within the VAE framework.

Our experimental findings for the primary model demonstrated

its advantages over standard baseline models. Furthermore, the

trials including sample creation based on particular future

performance demonstrated our model's potential for market

research.

VII. REFERENCES

[1] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth

Goel, Aaron C Courville, and Yoshua Bengio. A model with

recurrent latent variables for sequential data. Volume 28 of

Advances in Neural Information Processing Systems (2015).

[2] Avi Desai, Corbin Freeman, Zeyu Wang, Ian Beaver.

Timevae is a variational autoencoder that generates

multivariate time series. preprint arXiv:2111.08095, 2021.

[3] Chris Donahue, Julian McAuley, and Miller Puckette. Audio

synthesis with adversarial properties. arXiv preprint

arXiv:1802.04208, 2018..

[4] Claudio Esteban, Stephanie L Hyland, and Gunnar Ratsch.

Real-valued (medical) time series production using recurrent

conditional gans. arXiv preprint 1706.02633, 2017.

[5] Otto Fabius and Joost R. Van Amersfoort. Variational

recurrent autoencoders. arXiv preprint 1412.6581, 2014.

[6] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess,

Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and

Alexander Lerchner. Beta-vae: Learning fundamental visual

ideas using a limited variational framework. In the

International Conference on Learning Representations,

November 2016.

[7] Diederik P Kingma & Max Welling. Auto-encoding

variational Bayes. arXiv preprint arXiv:1312.6114 (2013)..

[8] Olof Mogren. C-rnn-gan stands for Continuous Recurrent

Neural Networks with Adversarial Training. arXiv preprint

arXiv:1611.09904 (2016)..

[9] Yoon, David Jarrett, Mihaela Van der Schaar. Generative

adversarial networks using time series data. Advances in

neural information processing systems, volume 32 2019.

