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Abstract—This study proposes a new generative model 

for quarterly financial data time series that is based on a 

variational autoencoder (VAE). The program provides 

financial data for a synthetic firm in a certain industry 

throughout a year, comprising four quarters of data. This 

technology employs a recurrent neural network-based 

VAE to successfully capture both multivariate 

distributions and temporal dependencies in the data. 

Compared to classic models such as the Multivariate 

Normal Monte Carlo Model and the Multivariate 

Gaussian State Space Model, our model's synthetic 

samples are more realistic, with higher visual fidelity and 

lower discriminative scores. In addition to the basic 

model, the derivative model has a conditional channel 

that generates samples with preset future performance. 

The user-friendly interface of our product makes it 

simple to utilize. Analyzing the patterns and features of 

synthetic samples can reveal significant information on 

alpha factor trading and risk management measures. 

Furthermore, applying the model to various datasets has 

the potential to improve these findings even more. 

Keywords—Generative model, Variational autoencoder 

,Financial data simulation, Time series analysis ,Recurrent 

neural network (RNN) 

 

I. INTRODUCTION   

 

Analysing the time series of fundamental company data is 

essential for internal and external analytics, as well as traders 

and risk managers. In spite of the useful information it 

provides, such data are often limited, such as data scarcity 

and confidentiality concerns. The creation of synthetic 

financial fundamental data sequences with similar statistical 

properties is an effective way to address these gaps and 

weaknesses in actual data. These synthetic data can serve a 

number of purposes, such as alleviating the lack of training 

data, enabling the development of data-dependent products 

and services, and revealing hidden characteristics that offer 

valuable market insights. 

Traditional methods for generating synthetic data usually 

rely on stochastic sampling based on known distributions, the 

Monte Carlo method is a well-known example. Although 

these methods are simple and interpretable, they often do not 

capture the intricacies of real-world data complexity. On the 

other hand, deep learning-based generative models possess 

strong unsupervised learning capabilities and demonstrate 

exceptional ability to generate complex entities, such as 

images, videos, text, and music. These models use deep 

neural networks to learn patterns and structures within 

training data. This knowledge can then be used to produce 

new and realistic data samples. Generative Adversarial 

Networks (GANs),Variational Autoencoders (VAEs), and 

autoregressive models such as Transformers are examples of 

deep-learning generative models with different frameworks 

and mechanisms, resulting in outputs with distinct 

characteristics. 

Synthetic data production for time-series data is 

challenging owing to the temporal patterns in the data. A 

generating process must account for multivariate 

distributions and temporal interactions between features. 

Recurrent Neural Network (RNN), a specialized Neural 

Network architecture designed for sequential data 

processing, has emerged as a strong contender. RNNs, unlike 

typical neural networks, have an internal memory that 

maintains information from past steps, enabling them to 

successfully capture temporal correlations and patterns. As a 

result, RNNs are quite useful for time series analysis. Our 

new model uses Variational Auto-Encoders (VAEs) and a 

Recurrent Neural Network (RNN) architecture to simulate 

quarterly financial data sequences for a fictitious company. 

Quarterly financial data collected over a one-year period 

demonstrate higher fidelity when compared to baseline 

models using traditional methodologies, as evaluated 

qualitatively and statistically in our trials. We expand our 

model by using next-quarter return performance as a 

conditional channel, yielding intriguing results. We matched 

our model with historical financial data from real-world 

SP500 companies and created a user interface for our 

solution. 

   

  



 

II. RELATED WORK  

 

The use of deep generative models with time series data is a 

relatively recent subject. Creating time series data has many 

practical applications. Time-series data, which consists of a 

succession of observations gathered at regular intervals 

throughout time, is essentially three-dimensional. Current 

approaches aim to identify the best combinations of 

advanced network architectures, including  Recurrent Neural 

Networks (RNN) and Convolutional Neural Networks 

(CNN), capable of processing this three-dimensional data, 

and deep learning-based generative models, primarily 

focused on Generative adversarial networks (GANs). 

 

     TABLE I. lists generative models and associated network types from the 

literature. 

 

  

In 2014, Fabius et al. developed a sequential-specific 

Variational Autoencoder (VAE). Their model incorporates 

RNNs to enhance the VAE architecture. The encoder 

comprises recurrent connections and uses the RNN's final 

encoded state to represent the input sequence. 

The approach is effective at learning latent 

representations and creating organized sequences. Fabius et 

al. demonstrate this by experimenting with MIDI data for 

music production [5]. 

Chung et al. (2015) introduced the Variational Recurrent 

Neural Network (VRNN) model. This novel approach 

incorporates a VAE into each time step. The VAEs are unique 

in that they are conditioned on the prior RNN state variable 

ht−1. Unlike a normal VAE with a multivariate Gaussian 

prior, the VRNN allows for an isotropic Gaussian 

distribution where the mean and variance are related to the 

preceding state. The VAE's strategic extension captures 

temporal intricacies in sequential data, ensuring the model 

understands its underlying structure [1]. 

Mogren (2016) introduced the C-RNN-GAN model, 

which is ideal for generating classical music data. In this 

approach, deep Long Short-Term Memory (LSTM) networks 

are used. These networks take randomly generated noise as 

input and process it to learn informative patterns. The learned 

patterns are then passed through fully connected layers to 

generate new sequential data samples.. In an adversarial 

training setting, a discriminator assesses both generated and 

real music samples. This method allows for the construction 

of diverse musical compositions with different tonal 

complexity and intensity [8]. 

Esteban et al. (2017) created the Recurrent Conditional 

GAN (RCGAN), which focuses on multidimensional time-

series data creation. RCGAN uses RNNs for both generator 

and discriminator functions, as well as a conditioning 

mechanism to direct the generation process. By conditioning 

on auxiliary information, RCGAN generates time series data 

with specified properties while retaining temporal coherence. 

This element is useful for generating privacy-preserving 

eICU data [4]. 

Donahue et al. (2019) introduced WaveGAN, a model for 

generating raw audio waveforms with GANs. WaveGAN's 

generator uses CNNs in both the generator and the 

discriminator to transform random noise into audio 

waveforms using transposed convolutions. At the same time, 

the discriminator distinguishes between genuine and 

produced sounds. This architectural method allows for the 

creation of high-fidelity audio samples by directly collecting 

complicated waveform elements [3]. 

TimeGAN (Yoon et al., 2019) is widely regarded as the 

most advanced model for generating time-series data. Yoon 

et al. (2019) propose a novel framework that combines the 

freedom of unsupervised learning with the control of 

supervised training. TimeGAN ensures that the dynamics of 

the training data are maintained during sampling by 

concurrently optimizing a learnt embedding space with 

supervised and adversarial objectives. The architecture is 

made up of four main components: an embedding function, 

a recovery function, a sequence generator, and a sequence 

discriminator. TimeGAN's technique captures feature 

encoding, representation creation, and temporal evolution 

simultaneously [9]. 

A more recent technique, TimeVAE (Desai et al., 2021), 

uses CNN encoders and decoders with specified trend-

representing blocks to balance complexity and compatibility 

[2]. This model uses a generative distribution with the form 

pθ(X | z) = N(µ,I). Initially considered for adaptation, an 

analysis of TimeVAE's code indicated that its generative 

method resembled reconstruction rather than direct sampling 

from N(0,I). This departure called into question the model's 

assumptions, which we eventually abandoned. 

In our proposed model, we draw inspiration from 

Recurrent VAE (Fabius et al., 2014) [5], but we enhance it 

with a deeper network topology that includes two layers of 

RNNs. While the Recurrent VAE has found applications in 

music composition and text/speech production tasks, we 

believe our model is a unique technique to producing time 

series data in economics and finance. 

 

  

III. METHODOLOGY  

 

In this part, we describe the approach used to create and build 

a generative model for synthetic financial data using a 

variational autoencoder (VAE) and a recurrent neural 

network (RNN) architecture. The technique begins with a 

review of VAEs, covering its underlying concepts and aims, 

and then goes on to explain the model architecture and 

Model / 

Network 
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training procedure in depth. We also cover the expansion of 

the VAE architecture to include conditional generation tasks 

via Conditional Variational Autoencoders (CVAEs) and the 

construction of the loss function to maximize model 

performance. 

A. VAE 

1)Overview 

Variational Autoencoders (VAEs), first presented by Kingma 

and Welling in their 2013 publication "Auto-Encoding 

Variational Bayes," are a strong generative modeling system 

that combines autoencoder and probabilistic modeling ideas. 

Unlike typical autoencoders, which provide point estimates, 

the VAE encoder produces the distribution of the latent 

embedding, allowing for the modeling of complicated data 

distributions and exploration of latent space [7]. 

 

The main objective of a Variational Autoencoder (VAE) is to 

produce samples that accurately capture the statistical 

distributions inherent in the original dataset, which 

comprises N independent and identically distributed (i.i.d.) 

continuous or discrete variables denoted as x. This entails 

describing the unknown probability function pθ(x). VAE 

operates under the assumption that the observed data is 

generated by a latent vector that is independent of the data 

itself. The generative process unfolds in two stages. Firstly, a 

prior distribution pθ(z) is employed to generate the latent 

variable z, which is then utilized alongside a generating 

distribution pθ(x | z). to construct the data point x .Though 

the specific expressions and probabilities of the 

aforementioned pθ(z) and pθ(x | z). may not be explicitly 

known, we operate under the assumption that they exhibit 

differentiability concerning both the parameters θ and the 

latent variable z. 

 

The prior pθ(z) is often unclear. To solve this, the VAE 

encoder introduces an approximation of the posterior 

distribution: qϕ(z) ≈ pθ(z | x). The encoder models the 

posterior probability distribution qϕ(z), while the decoder 

models the conditional probability pθ(x | z).During training, 

the posterior is regularized to fit this chosen prior. This 

regularization combines a posterior variance approximation 

of the Kullback-Leibler (KL) divergence with a 

predetermined prior loss function. Using a predetermined 

prior enables for simple direct sampling of a concealed 

representation of the prior distribution. The decoder can 

generate synthetic data distributions that embody the 

statistical properties of the original data set from the latent 

representation. In this way, VAEs allow the exploration of 

latent space and the generation of new data samples that 

conform to the data distribution. 

 

In our case, we assume that the prior distribution is a standard 

isotropic multivariate Gaussian pθ(z) = N(0,I), and the 

inferred posterior distribution is a multivariate Gaussian with 

diagonal covariance qϕ(z|X) = N(µϕ(X),diag(σϕ2(X)). The 

encoder takes X as input and outputs two vectors µϕ(X) and 

σϕ2(X) in Rd, where d is the dimensionality of the latent space. 

We let the output distribution be an isotropic multivariate 

Gaussian, pθ(X|z) = N(µθ,diag(σθ2(z))). The decoder takes z 
as input and outputs the vectors µθ and σθ2(z) in Rs. We also 

introduce a lower bound for σθ2(z), ensuring that the scale for 

all variables must exceed a certain threshold to avoid an 

overly narrow output distribution. 

In this scenario, we make the assumption that the prior 

distribution follows a normal isotropic multivariate 

Gaussian, denoted as pθ(z) = N(0,I), while the inferred 

posterior distribution is a multivariate Gaussian with 

diagonal covariance, expressed as qϕ(z|X) = 

N(µϕ(X),diag(σϕ2(X)). The encoder takes X as input and 

generates two vectors µϕ(X) and σϕ2(X) in Rd, where d 

represents the dimensionality of the latent space. We assume 

an isotropic multivariate Gaussian distribution for the 

decoder, denoted as pθ(X|z) = N(µθ,diag(σθ2(z))). The 

decoder accepts z as input and outputs the µθ and σθ2(z) in Rs 

.To prevent an excessively narrow output distribution, we 

enforce a lower bound on σθ2(z), ensuring that the scale for 

all variables remains above a certain threshold. 

2) Conditional VAE 

Conditional Variational Autoencoders (CVAEs) extend the 

basic VAE framework to address conditional generation tasks 

where both input data and additional conditions are 

incorporated into the generation process. CVAEs are 

particularly useful in scenarios where the generated data is 

influenced by specific attributes or contexts, enabling 

controlled and targeted data synthesis. 

 

In a CVAE, the latent representation z is conditioned not only 

on the input data x, but also on additional conditioning 

variables y representing the specific conditions. The prior 

distribution becomes pθ(z | y), where y represents the 

additional conditions. The posterior and generative 

distributions become qϕ(z | x,y) and pθ(x | z,y). The CVAE 

loss function extends the original VAE loss by including the 

conditioning variables in both the prior and posterior 

distributions. 

 

3) Loss Function 

The CVAE loss function, also known as the obvious inferior 

loss function (ELBO), can be written as.: 

 

Our training loss function follows the previously defined 

ELBO loss function with one modification. We use a β 
weight on the reconstruction error as a hyperparameter, 

which serves to increase or decrease the emphasis on the 

reconstruction loss relative to the KL divergence loss 

between the approximated posterior q(z|X) and the prior p(z). 

This variation is also known as the beta-VAE (Higgins et al., 

2016) [6]. 

 

 

Lθ,ϕ = −Eqθ logpϕ(X | z) + DKL(qθ(z | X) ∥ pϕ(z)) (1) 

  Lθ,ϕ = −Eqθ logpϕ(X | z,y) + DKL(qθ(z | X,y)∥pϕ(z | y)) (2) 

     Lθ,ϕ = −β × Eqθ logpϕ(X | z) + DKL(qθ(z | X)∥pϕ(z)) (3) 

Lθ,ϕ = −β × Eqθ logpϕ(X | z,y) + DKL(qθ(z | X,y)∥pϕ(z | 

y)) (4) 



 

B. Model Architecture 

The encoder and decoder components are built with a two-layer 

recurrent neural network (RNN) architecture. The encoder 

receives a 3-dimensional array with dimensions s = N ×T ×D . 
N denotes the array size, T represents the number of time steps, 

and D is the number of function dimensions. 

 

The Encoder module starts with an initial RNN layer RNN 1 
that processes the input signal and produces hidden state 

representations. This intermediate output is then fed into a 

subsequent RNN layer RNN 2, which further refines the hidden 

state information to produce a more compact and meaningful 

representation. The final hidden state hidden n obtained from 

RNN 2 is reshaped to fit the batch size and embedding 

dimension embed  dim, thus serving as the encoded 

representation of the whole input sequence. The size of the 

hidden dimension is twice the size of the embedding dimension. 

 

The Decoder component mirrors this architecture by first 

transforming the encoded representation using a linear layer fc 
to prepare it for the decoding process. The modified encoding 

is then elongated along the time dimension to align with the 

length of the original sequence. This elongated tensor is then 

passed through the initial RNN layer, denoted as RNN 3, within 

the decoder, followed by another RNN layer labeled as RNN 

4.The final hidden state output from RNN 4 is used to predict 

both the mean and log scale of the generated sample’s 

multivariate distribution. 

 

In the training stage, the encoder transforms the data into two 

latent representation vectors, acting as parameters for a 

multivariate Gaussian distribution. The loss is computed by 

utilizing the encoded parametric distribution of the latent 

representation and the decoder distribution of the observations 

conditioned on the latent representation. In the generation 

process, a latent vector z is sampled from a standard isotropic 

multivariate Gaussian \( pθ(z), concatenated with the 

conditional channel y (if present), and subsequently decoded to 

yield the isotropic multivariate Gaussian distribution pθ(X|z) 

for the sample. A synthetic data point X
ˆ 

is then sampled from 

the generative distribution. 

 

 
Figure 1:  

Model Diagram  

 

 

C. Baseline Models 

We have chosen two traditional simulation methods to serve 

as benchmark baseline models. It’s important to note that the 

Multivariate Gaussian Monte Carlo model (MNS) ignores 

temporal relationships, while the Multivariate Gaussian State 

Space model (MGSSN) includes them. 

• Multivariate Gaussian Monte Carlo Model: This 

model operates under the assumption that the data adhere 

to a multivariate Gaussian distribution, characterized by 

the mean vector (µ) and covariance matrix (Σ). These 

parameters delineate the properties of the distribution, 

facilitating the generation of data points through 

sampling. The process involves the selection of random 

samples (x) from the Gaussian distribution via Monte 

Carlo sampling. 

• Multivariate Gaussian State Space Model: The 

MGSSN assumes that observed data (y) is derived from 

an underlying latent state (x) through a linear Gaussian 

relationship. This model includes two key equations: the 

state transition equation (xt+1 = Axt + wt) and the 

observation equation (yt = Cxt + vt). Here A is the state 

transition matrix, C is the observation matrix, and wt and 

vt represent process and observation noise, respectively. 

The latent state captures the underlying dynamics, while 

the observation noise accounts for discrepancies between 

actual observations and model predictions. 

 

 

IV. MODEL 

  

Using the methods described above, we created a synthetic 

financial data generator capable of producing sector-specific 

synthetic financial data time series for four quarters of a year. 

This was accomplished by training individual sector-specific 

models using corresponding real historical data from 

companies within each respective sector. This process 

yielded nine fitted VAE (CVAE) models, with each model 

representing a distinct sector. 

In the next experiment, we concentrated on determining the 

efficacy of one of these models: Consumer, Non-cyclical. We 

presented cumulative density function charts for both the 

training and validation datasets to evaluate the calibration. To 

assess the quality of the generated data, we compared 

samples generated by our model to those generated by 

baseline models. Furthermore, we explored whether our 

reconstruction technique increased feature predictability 

through denoising by comparing the efficacy of stock 

selection with original and rebuilt features. We also expanded 

our model to include the next quarter's return level and a 

conditional feature. This addon enables for the creation of 

samples with preset future performance characteristics. 

 

   We used Bloomberg to gather five years of historical 

quarterly financial data from 503 firms across nine sectors of 

the S&P 500 Index. Yahoo Finance provided historical 

closing prices for each firm one day before and after the 

quarter's reporting date, which were then utilized to compute 

quarterly returns. Every firm was issued a sector label. The 

distribution of businesses across industries is as follows: 

 

 

 

 

 



TABLE II. COMPARISO NUMBER OF BUSINESSES IN EACH INDUSTRY   

Sector Number of 

Companies 

Consumer, Non-cyclical 112 

Financial 91 

Industrial 68 

Consumer, Cyclical 63 

Technology 59 

Communications 34 

Utilities 30 

Energy 26 

Basic Materials 20 

 

 

For our project, we selected eight fields: Total Debt-to-Total-

Capital, Price-to-Book Ratio, Price Earnings Ratio (P/E), 

Total Asset Growth Rate, Revenue Growth Rate, Return-on-

Community-Equity, Return-on-Assessment, and Gross 

Margin [1]. These fields were chosen for their ability to 

provide insight into a company’s leverage, valuation, growth, 

profitability, and market relevance as potential factors 

influencing future stock returns. 

 

Exploratory data analysis revealed weakly correlated, highly 

skewed variables with many extreme values (see Figure 2). 

Therefore, several preprocessing steps have been performed 

to address these characteristics. First, we treated left-skewed 

variables (Total Debt to Total Capital, Price to Book Ratio, 

and Price Earnings Ratio (P/E)) by replacing non-positive 

values with a small positive constant before applying a 

logarithmic transformation. Second, we used winsorization to 

replace extreme negative and positive values with the 2nd and 

99th percentiles of the corresponding quarter’s values given 

the presence of extreme values in all fields except Price to 

Book Ratio and Gross Margin. We then partitioned the full 

dataset into nine separate datasets, each containing companies 

from a specific industry. We standardized the data in each 

quarter’s cross-section within each separate dataset. For each 

specific sector and quarter, the values of each field across 

firms were normalized to have a mean of zero and a standard 

deviation of one. This standardization process serves two 

purposes. First, it facilitates deep neural network learning and 

eliminates market dynamics influence. To allow for future 

reverse transformations, we recorded the mean and standard 

deviation time series for each sector. Missing values will be 

imputed to zeros. 

 

 

 

 

Figure 2:The impact of log transformation on exploratory 

data analysis.  

 

Each sample in our datasets represents a company's financial 

time series across four consecutive quarters within a single 

year (T = 4, D = 8). An i.i.d. dataset is created by collecting 

distinct, non-overlapping samples from various firms. The 

Basic Materials dataset covers five years of data for twenty 

organizations, resulting in a total sample size of 20 × 5 = 100. 

This strategy has both benefits and drawbacks. While it 

considerably expands our sample size, it overlooks any 

potential inter-year relationships within the same 

organization. 



TABLE III. Statistics of the CSMNC dataset before normalization and 

missing value imputation 

 

 

A. Evaluations 

1)Calibration 

We evaluate our model's calibration effectiveness using the 

following method. Our data collection is first separated into 

two sets: a training set and a test set, with the training set 

including data from 80% of the organizations. The model 

trained on the training data produces multivariate 

distributions. We next proceed with the following stages on 

both the training and test sets. 

 

1. Using the decoded generative distributions from z, 

calculate the average CDF (cumulative distribution function) 

of data for each field and time step. 

2. To mimic the distribution of average CDFs, sample a z 

many times and repeat step 1. 

 

The average CDFs are determined using the equation below. 

                       (5) 

 

Here, i represents each observed sample in the data sets, and 

pθ(xs,t | z) denotes the marginal distribution of the field s at 

time step t according to the generative distributions. When 

ideally calibrated, the average cdfs should have a uniform 

distribution. 

Figure 2 shows the histogram and cdf plots representing the 

distribution of the 1000 simulated average cdfs. The 

observed pattern suggests that for the majority of features, 

the distributions of the average cdfs for both the training and 

test sets closely resemble uniform distributions. This 

alignment indicates effective calibration of our model and 

suggests minimal overfitting. However, an interesting 

observation emerges: in the first and last steps, the average 

cdfs of some fields cluster around 50% for both the training 

and testing sets. The reason for this overconfidence in the 

first and fourth quarter data generation remains unclear. 

Further investigation is warranted to uncover the reasons. 

 

 
Figure 3: Average cdfs graphs 

2)Fidelity 

The final model is trained using the entire data set. We 

compare the fidelity of our model's produced synthetic 

samples to two baseline models: the Multivariate Gaussian 

Monte Carlo Model (MNS) and the Multivariate Gaussian 

State Space Model (MGSSM). There are two parts to the 

fidelity metrics. First, we examine the visual similarity 

between the generated synthetic samples and the observed 

real samples, both in density plots with time-flattened 

marginal distributions and in TSNE plots with the time 

dimension reduced to a two-dimensional representation. 

Second, we apply discriminatory scoring. Specifically, we 

use supervised learning to build complex classification 

models to distinguish between actual and synthetic data, with 

the goal of achieving an accuracy of around 0.5 on the 

withheld dataset. A number closer to 0 implies greater 

performance, implying that the created data is closely related 

to the original data. The three classifiers used are Support 

Vector Classifier (SVC), Gradient Boosting Machine 

Classifier (GBM), and Random Forest Classifier (RF). 

 

Figure 3 depicts density plots that demonstrate broad 

distribution statistics, as well as TSNE plots that indicate 

temporal trends. Our findings show that our model provides 

samples with superior visual authenticity than the classic 

MNS and MGSSM models. The basic models struggle to 

capture complicated distributions since they both rely on 

preset Gaussian distributions. In contrast, our model 

efficiently captures temporal patterns, which is difficult for 

baseline models. The MNS model overlooks temporal 

patterns, and MGSSM's simplistic linear Gaussian 

connection does not correctly capture them, as demonstrated 

in the TSNE charts. However, it is worth noting that the 

synthetic data points show less dispersion than the actual 

observations, implying some degree of overconfidence. 

Addressing this problem is an area of future research. 

 Count Mean Std Min 25% 50% 75% Max 

Log Total Debts to 
Total Capital 

2165 3.69 0.80 0.09 3.52 3.82 4.15 5.10 

Log Price to Book 
Ratio 

2151 1.84 1.14 -0.62 1.10 1.67 2.42 8.83 

Log Price 

Earnings Ratio 

2178 3.21 0.61 1.47 2.75 3.18 3.56 5.72 

Total Assets 

Growth Rate 

2204 1.95 6.39 -29.3 0.89 0.81 3,64 38.3 

Revenue Growth 
Rate 

2208 2.01 10.9 -53.6 2.41 1.87 6.71 57.4 

Return on 

Common Equity 

2131 35.8 62.1 -46.9 10.6 19.6 35.7 758 

Return on Assets 2192 8.44 7.10 -29.4 4.06 7.20 12.4 35.9 

Gross Margin 2080 48.2 21.9 -9.47 32.4 49.9 66.0 98.6 



 

In terms of discriminative scores, our model greatly 

outperforms the baseline models. The VAE model has mean 

and maximum discriminative scores of 0.33 and 0.37, 

compared to 0.46 and 0.48 for MGSSN and 0.45 and 0.47 for 

MNS.  The table below shows detailed results. Despite the 

inherent unpredictability in the sample and generating 

processes, the overall advantage is clear. The discriminative 

score, while much better, remains unsatisfactory. The system 

achieves more than 80% accuracy in discriminating between 

phony and real data, highlighting the complexities of market 

modeling. 

 

 
Figure 4: Synthetic sample fidelity. 

 

TABLE IV. Metrics for discriminating between classifiers and models 

Classifier / Model VAE MNS MGSSM 

Support Vector 

Classifier 

0.3036 0.4232 0.4241 

Gradient Boosting 

Machine 

0.3304 0.4509 0.4777 

Random Forest 

Classifier 

0.3661 0.4732 0.4732 

Max 0.3661 0.4732 0.4777 

 
 

Mean 0.3333 0.4509 0.4583 

3)Utility 

Encouraged by the idea that "the bottleneck mechanism 

inherent to VAEs, connecting the encoder and decoder, 

functions to remove noise from the input, potentially 

enhancing subsequent tasks like prediction” (Desai et al., 

2021) [2], we designed an experiment to predict next-quarter 

stock returns using both the original fundamental factors (the 

eight fields we selected) and their reconstructed counterparts. 

In contrast to the generative process, the reconstruction phase 

involves decoding the encoded zmeani to obtain E[X
ˆ 

i], 

resulting in reconstructed data that closely resemble the 

observations. Although there is no explicit mathematical 

grounding, some proponents suggest that the reconstructed 

samples represent denoised versions of the original data. 

 

Specifically, we compared the forecasting abilities of the 

original and denoised factor exposures for the testing 

timeframe (2018Q2 to 2023Q1). Within each quarter of this 

timeframe, our procedure unfolded as follows. First, we 

trained an ordinary least squares (OLS) regressor using the 

factors from the previous quarter and the corresponding 

returns from the current quarter. Subsequently, we employed 

the trained regressor to predict returns for the subsequent 

quarter based on the factor exposures of the current quarter. 

Our evaluation involved comparing results obtained using 

both the original factor exposure data and the reconstructed 

factor exposure data. Evaluation metrics include the 

information coefficient (IC), information coefficient 

information ratio (ICIR), rank information coefficient 

(RankIC), and backtested cumulative returns from the 

strategy of holding the top 20% stocks with the highest 

predicted returns every quarter.1 It is essential to note that the 

data used for evaluation are in-sample. 

 

The subsequent table 5 and figure 4 display the performance 

outcomes. In essence, our experiment did not uncover 

evidence that reconstruction significantly enhances the 

efficacy of financial factors. All metrics indicate better 

predictability of the original data than the reconstructed data. 

 
Figure 5: Cumulative return of factor-based stock 

sefactors v.s. reconstructed factors lection strategy, 

original factors v.s. reconstructed factors. 

 

 

 

 

 



 

TABLE IV. Stock return productivity metrics, original factors v.s. 

reconstructed factors 

Metrics / Factor Original Reconstructed 

Average IC 0.1362 0.0960 

Negative Percentage 21.05% 36.84% 

Average RankIC 0.1404 0.0943 

Negative Percentage 15.80% 31.58% 

ICIR 0.7518 0.5585 

 

B. Incorporating Conditional Features 

Whether and how do one-year quarterly fundamental 

characteristics differ between firms that succeed and those 

that underperform in the following first quarter? To support 

this research, we add the Return Rank as a conditional label, 

allowing us to train a conditional VAE capable of producing 

synthetic samples suited to certain future performance 

conditions. The Return Rank is calculated by ranking each 

company's relative next-quarter stock return on a given date 

into three categories: outperforming (return in the top 20% 

among sector peers), underperforming (return in the bottom 

20% among sector peers), and neutral (all other cases). 

 

A preliminary look at the marginal distributions of each 

sample at different quarters offers interesting results. Figure 

7 indicates that changes in basic factor patterns between 

cases of differing rankings are rather minor, consistent with 

the efficient market hypothesis. However, it is clear that 

outperforming synthetic stocks display far higher growth 

rates in both revenue and total assets than underperforming 

synthetic stocks. This divergence gets even more evident as 

we look at more recent historical times. This finding shows 

that current revenue and total asset growth rates may be 

useful markers for projecting next-quarter success. 

 

 
Figure 6: Plots showing distribution density across 

 

C. Product 

Finally, we finished the product development phase of our 

simulator by training two VAE and CVAE models for each of 

the nine sectors. This product allows customers to enter a 

sector, a certain year, and a return tier as inputs. The simulator 

calls the appropriate model (VAE when the return tier is 

undefined and CVAE when specified) for the selected sector. 

The algorithm randomly selects a labeled or unlabeled latent 

vector to create a (T ×D = 4×8) sample with a 4-quarter 

sequence of the eight financial variables. This sample is then 

re-transformed (including normalization and log 

retransformations) using the recorded means and standard 

deviation data table for the specified sector and year.  

  

Our Synthetic Financial Data Generator has a user-friendly 

interface based on the Streamlit architecture. Users may view 

both the produced data table and a line graph representation of 

their single sample. The interface also allows you to produce 

and export a dataset with several samples in CSV format. This 

capability is very valuable for users who want to undertake 

more population characteristic research and need a collection 

of synthetic data. 

  

V. LIMITATIONS AND FUTURE WORK 

A clear alternative to individually modeling each sector by 

training multiple models on sector-specific datasets is to 

develop a unified model using the entire dataset and 

incorporating the sector as a conditional channel. However, due 

to time constraints, we did not explore this approach or compare 

it with the aforementioned methodology. 

 



Although we have evaluated one of the primary models, it is 

imperative to emphasize that future evaluations should 

encompass both the conditional and sector-specific models. 

In summary, our study undertook a pertinent yet exploratory 

experiment aimed at replicating a subset of domains, utilizing a 

relatively modest network and a limited number of 

organizations. We incorporated a single conditional channel for 

control. While our model yielded acceptable results, it fell short 

in some aspects, including overconfidence and elevated 

discriminative scores. We anticipate that an expanded and 

refined model, trained on a larger dataset, will afford greater 

capability and yield more robust commercial applications and 

economic insights. This envisioned future endeavor aligns with 

our objective of enhancing the model's performance and 

broadening its scope of application. 

 

VI. CONCLUSION    

In this endeavour, we adopted a distinctive methodology to 

generate synthetic financial data, employing a temporal 

variational autoencoder (VAE) framework. Our model, 

designed to generate quarterly financial data sequences for a 

fictitious entity within a specific industry, fulfills various 

objectives, including data-driven engineering and market 

research. To capture the complex interplay of multivariate 

distributions and temporal dependencies inherent in financial 

time series data, our approach integrates recurrent neural 

networks (RNNs) within the VAE framework. 

Our experimental findings for the primary model demonstrated 

its advantages over standard baseline models. Furthermore, the 

trials including sample creation based on particular future 

performance demonstrated our model's potential for market 

research. 
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