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Abstract. The previous two parts of the paper (correspondingly, https://philpapers.org/rec/PENFLT-2 and
https://philpapers.org/rec/PENFLT-3) demonstrate that the interpretation of Fermat’s last theorem (FLT) in
Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in
Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also
for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of
(probabilistic) measure of a subspace of Hilbert space and especially its uniqueness can be
unambiguously linked to that of partial algebra or incommensurability, or interpreted as a relation of the
two dual branches of Hilbert arithmetic in a wide sense. The investigation of the last relation allows for
FLT and Gleason’s theorem to be equated in a sense, as two dual counterparts, and the former to be
inferred from the latter, as well as vice versa under an additional condition relevant to the Gödel
incompleteness of arithmetic to set theory. The qubit Hilbert space itself in turn can be interpreted by the
unity of FLT and Gleason’s theorem. The proof of such a fundamental result in number theory as FLT by
means of Hilbert arithmetic in a wide sense can be generalized to an idea about “quantum number
theory”. It is able to research mathematically the origin of Peano arithmetic from Hilbert arithmetic by
mediation of the “nonstandard bijection” and its two dual branches inherently linking it to information
theory. Then, infinitesimal analysis and its revolutionary application to physics can be also re-realized in
that wider context, for example, as an exploration of the way for physical quantity of time (respectively,
for time derivative in any temporal process considered in physics) to appear at all. Finally, the result
admits a philosophical reflection of how any hierarchy arises or changes itself only thanks to its dual and
idempotent counterpart.
Keywords: completeness, Gleason’s theorem, Fermat’s last theorem, Hilbert arithmetic, idempotency and
hierarchy, Kochen and Specker theorem, nonstandard bijection, Peano arithmetic, quantum information

XVIII AN INTERPRETATION OF “PROBABILISTIC MEASURE”, ITS UNIQUENESS,
AND THE SENSE OF GLEASON’S THEOREM

Gleason’s theorem (1957) inspires a series of:
- generalizations (e.g. Benavoli, Facchini, Zaffalon 2017; Flatt, Barnett, Croke 2017; De Zela

2016; Edalat 2004; Rudolph, Wright 1998; Drisch 1979; Eilers, Horst 1975);
- alternative proofs (e.g. Busch 2003; Richman, Bridges 1999; Cooke, Keane, Moran 1985),

reformulations (e.g. Billinge 1997; Nishimura 1994);
- interpretations (e.g. Buhagiar, Chetcuti, Dvurečenskij 2009; Held 2009; Richman 2000;

Tarrach 1997; Hellman 1993);
- applications (e.g. Dvurečenskij 1993);
- testing experiments (e.g. Campos, Gerry 2002; Peres 1992);
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- or only connotations, analogies and allusions in quantum mechanics and information (e.g.
Wright, Weigert 2019; Rieder, Svozil 2007; Hrushovski, Pitowsky 2004; Isham, Linden,
Schreckenberg 1994; Chevalier,  Dvurečenskij, Svozil 2000; Carruthers 1984);

- as well as in other, mainly mathematical sciences (e.g. Moretti, Oppio 2018; Marlow 2006;
Mushtari 1998; 1998a; Matvejchuk 1997; Dvurečenskij 1996; Dvurečenskij 1993; Dvurečenskij,
Mišík 1988; Dvurečenskij 1987).

So, it is a considerable scientific and cultural fact. Literally, Gleason’s theorem is a statement
about the uniqueness of any probabilistic measure in Hilbert spaces of dimension greater than
two.

The introduction section1 of the present Part III is dedicated to clarifying the meaning and
philosophical sense of those concepts involved in Gleason’s theorem in the context of FLT by the
mediation of Hilbert arithmetic (e.g. Penchev 2021 August 24) as well as by an interpretation of
metaphysical transcendentalism as a scientific hypothesis admitting to be refuted (e.g. Penchev
2021 August 31)2.

“Probabilistic measure” means any mapping of an “event space”, e.g. in the context of the
Kolmogorov (1933) axioms of probability theory, into the interval [0,1] whether real or rational.
“Event space” forces any of its elements to be either “successful” or “unsuccessful” therefore
dividing disjunctively all elements into two classes interpretable correspondingly as the
internality or as the externality of the same wholeness furthermore idempotent to each other.

Thus, the concept of “event space” is quite similar or mathematically isomorphic to that of
wholeness as it is meant by scientific transcendentalism. Indeed, it doubles the wholeness
(originating from the totality, e.g. for scientific transcendentalism) either as “successful” or as
“unsuccessful” events “depicting” all events into their “successful” part. So, the mathematical
meanings (or structures) of scientific transcendentalism's “wholeness” and probability theory’s
“event space” can be thought to be the same.

In fact, even set theory’s “set” can be interpreted as isomorphic to that structure after
restricting Cantor’s “loose use”3 of “set” to a more rigorous meaning able to prevent paradoxes
such as Russell’s (1902; 1903) as far as it is to be a subset of another set. Then, the complement
of the subset to the other set, on the one hand, and the subset itself, on the other hand, can be
immediately interpreted whether as the externality versus the internality of a certain wholeness
or not worse, as the unsuccessful events versus the successful events of a certain event space
relevant to the set at issue. Thus, scientific transcendentalism’s “wholeness” and probability
theory’s “event space” can be immediately related to set theory’s “set” being one of the most
fundamental notions for mathematics at all and especially for its foundations.

3 That is: an unlimited use of the concept of set, e.g. any collection can be interpreted as a set of the same
elements (e.g. Sean 2018; Srivastava 2014; Jane 2010; Bussotti, Tapp 2009; Dauben 2005; 1983; 1978;
Tiles 2004 ).

2 Both “Hilbert arithmetic” and “scientific transcendentalism” are discussed in detail in the context of FLT
in the previous parts of the paper and will be granted to be familiar to the reader.

1 The numeration of the sections in Part III continues following that in Part II.



That “cure” of set-theoretical paradoxes is alleged to be “empirical” as far as the restriction
of the meaning of the “set” is added “ad hoc”4 eventually preventing all known paradoxes, but
without proof about whether it would be sufficient to avoid any paradox, for example, which can
appear in the future (e.g. Sean 2018; Mayberry 1977; Orey 1956). The discussion which is
forthcoming during the present Part III of the paper may furthermore supply the sketch of a
proof for that sufficiency due to the completeness of Hilbert arithmetic in turn exploiting the
completeness of quantum mechanics because of the theorems of the absence of hidden variables
(Neumann 1932; Kochen and Specker 1967). In other words, one is able to trace that restriction
of a set, after being isomorphic to “event space” and “wholeness” as a sufficient condition of
completeness including even to the absence of hidden variables in quantum mechanics.

The concept of probabilistic measure means that any event space once supplied by that
double and idempotent structure of successful versus unsuccessful events can be mapped onto
the numerical interval [0,1]. In fact, that numerical interval can be in turn interpreted as an area
of successful events versus its complement to the real or rational abscisa (or at least its positive
semi-axis). Indeed, the abscissa is interpretable again as an event space, in which successful
events are all probabilities (in a narrow or classical meaning of “probability”5).

As well as vice versa: transcendentality can be interpreted by means of possibility, scientific
transcendentality by probability, and quantum mechanics itself involves inherently the
probabilistic description of the world, therefore implicitly introducing the principle of scientific
transcendentality.

Furthermore, one can trace the pathway able to link scientific transcendentality, after it is
interpreted as a probabilistic description of the world in quantum mechanics, to quantum
neo-Pythagoreanism advocated in all three parts of the paper. A step following that pathway
consists in involving a certain mathematical structure such as Hilbert space (in the case of
Gleason’s theorem) exemplifying the arbitrary set mappable into the interval [0, 1] according to
the condition for probabilistic measure.

Then, the philosophical sense of Gleason’s theorem can be realized by means of the relation
of idempotency and hierarchy already discussed in detail in the previous two parts, and
especially, in the introduction Section I (i.e. in Part I). Indeed, the general concept of dimension
(also embodied in the structure of Hilbert space being arbitrarily dimensional) can allow for that
of infinity in set theory (therefore the Cantorian hierarchy of infinities) to be reorganized as
many copies of the same finiteness, each of which gapped from the next one by the same kind of
gaps as between two successive dimensions such as those of Hilbert space, which can be

5 Indeed, quantum information and thus, the tool of Hilbert arithmetic in a wide sense allows for the
generalization of the concept of probability also to any complex values (particularly, negative real values
as well as positive ones, but greater than a unit) discussed in detail in another paper (Penchev 2012).
However, that generalization seems not to relate to the application of Hilbert arithmetic for proving FLT.

4 The logical necessity of any eventual solution to be only “ad hoc” relevant to the relative consistency of
set theory (if it is meant just to arithmetic) originates (and even can be inferred rigorously) from the Gödel
incompleteness. Indeed, it would be contradictory not to be always “ad hoc”, since all solutions being
always “ad hoc” can be interpreted to be a synonym of incompleteness.



reinterpreted as a mathematical model of set theory as to the rest part of mathematic, supplied
furthermore by the additional advantage to involves consistently Peano arithmetics in relation to
its dimensions.

The relevant interpretation of infinity as the gap between two copies of finiteness
(respectively two anti-isometric copies of Peano arithmetic as in Hilbert arithmetic) can be
equivalently represented by the counterparts of the axiom of choice and the well-ordering
“theorem” as follows. Any choice among the elements of any infinite set admissible according to
the axiom of choice can be decomposed into a well-ordered series of binary choices each of
which means a bit of information and thus as a whole: an infinite binary string. Then, the gap
between the options of a bit of information would correspond to any two successive dimensions
following immediately one after another, and the well-ordered string of bits, to all successive
dimensions of the Hilbert space at issue.

Meaning that difference between two dimensions of Hilbert space versus more than two of its
dimensions, furthermore being involved in the statement of Gleason’s theorem, it can be directly
interpreted in terms of set theory and even only in those supposed by the equivalent counterparts
of the axiom of choice and the well-ordering “theorem”. Dimensions “ ” can be related𝑛 = 1, 2
both to the states of a bit of information and to the first two bits of the binary string of bits of
information. On the contrary, the rest dimensions “ “ can refer only to the string,𝑛 = 3,  4,  5,  ...
but not to a single bit of it, therefore generating an asymmetry between a binary choice and the
series of binary choices therefore, maybe eventually violating the equivalency of the axiom of
choice and the well-ordering “theorem” furthermore interpretable as “incommensurability”
between them.

Utilizing the tool of Hilbert arithmetic in a wide sense, one can transfer the same asymmetry
described above from the “branch” of Hilbert arithmetic in a narrow sense into its dual
counterpart of the qubit Hilbert space. Then, Gleason’s theorem (as well as the Kochen - Specker
theorem, in fact) means just the last asymmetry (but without the context of Hilbert arithmetic in a
wide sense) or that of FLT therefore restricting the proper consideration only to the separable
complex Hilbert space of quantum mechanics (though generalized further to any Hilbert space as
to Gleason’s theorem).

Set in the same context of Hilbert arithmetic, FLT6 means the analogical difference between
two and more than two dimension due to the distinction of idempotency from hierarchy, but
restricting its explicit statement only to the opposite branch of Hilbert arithmetic in a narrow
sense similarly (or “dually”) as the two rest theorems limiting themselves to the qubit Hilbert
space.

As the previous Part II demonstrates, the analogy between two dual counterparts of Hilbert
arithmetic in a wide sense can be absolutely formalized to an isomorphism or a homomorphism
under the definitive condition of Hilbert arithmetic and thus this allows for the Kochen - Specker
theorem meaning a statement referring to the one branch to be nonetheless utilized for the proof

6 The idea that FLT can be inferred from Gleason’s theorem is articulated for the first time in: Penchev
2015.



of the gap between two and more than two dimensions on the other branch, as FLT can be
reinterpreted.

The same pathway between both counterparts of Hilbert arithmetic in a wide sense pioneered
from the Kochen - Specker theorem applied to FLT in the previous part will be now exploited
starting from Gleason’s theorem as far as it and the Kochen - Specker theorem mean the essential
distinction between two and more than two dimensions in the separable complex Hilbert space
(though the Kochen - Specker theorem does this in a rather implicit way).

Another preliminary notice, furthermore generalizing the unusual way of representing
mathematical considerations in the previous two parts, refers to the philosophical distinction of
“understanding” and “logical syllogism” since the latter is the standard for any mathematical
proof to be represented in a scientific paper:

The correctness of the logical syllogism is sufficient for the corresponding proof, but it by
itself does not need any understanding: for example, it can be repeated and thus checked by a
Turing machine. Unlike logical syllogism being “objective” in the sense that can be repeated by
anyone, even by a contemporary computer in principle, any proper understanding is “subjective”
depending crucially on a relevant insight accomplishable in one’s brain-mind, but not by any
Turing machine.

Any real human mathematician is forced to understand the proof at issue, otherwise he or she
would not be able to pioneer its syllogism for the specific way of working of the human brain
and mind being absolutely different from that of a Turing machine. That requirement of
objectiveness as to any mathematical proof as far as all mathematicians are human beings
therefore necessarily supplying and applying their own individual understandings to the
objective logical syllogism of the proof deforming the logical syllogism of the proof at issue by
the human understanding and even: in a unique way in general.

In fine, that permanently acting “force” of objectiveness in all mathematicians’ mind-brains
has fatally influenced what a mathematical understanding should be causing it to be sharply
restricted professionally: at that, the subject within which any understanding permitted for a
mathematician become more and more narrow therefore excluding even its extension to
neighboring or adjacent mathematical areas since the mathematician trying to understand a
problem or its proof is not competent about them: she or he is ignorant beyond the very narrow
professional subject, perhaps more or less not suspecting those close mathematical
considerations or the corresponding wider insight on the investigated problem.

On the contrary, the present paper tends to demonstrate that FLT has become one of the
greatest mathematical puzzles of all times just for that organization of mathematical cognition
reflecting the analogical organization of human cognition at all. As even Wiles’s proof
demonstrates sophisticatedly, complicatedly, indirectly and implicitly, its solution is quite
impossible being restricted to a narrow “Fach”7 since it passes through a series of rather different
mathematical disciplines.

7 “Fach” is to refer to Richard Rorty’s paper (1982), to its context and way of use.



However, one may go much further reflecting on all troubles about FLT to be proved as
originating from the fundamental organization of cognition in Modernity, according to which for
example, mathematics can build only models of reality so that the crucial gap between any
mathematical model and reality meant by it is not removable, in fact being established in
philosophy since Descrates’s age and his dualism. In other words, the restriction of “Fach”
limiting the possibility of understanding of each mathematician is generalized (in the present
paper) to the boundary of the Cartesian “mind” and (versus) “body” and then, realized to be the
main obstacle for FLT to be proved.

The mathematical tool of Hilbert arithmetic allows for both disjunctive areas to be merged
utilizing the proved completeness of quantum mechanics due to the theorems of the absence of
hidden variables. Transcending the limits of what condition should be in Modernity, the
syllogism for proving FLT turns out to be shockingly simple and elementary, literally within a
page therefore confirming again that the incredible difficulty which has been insurmountable for
all mathematicians for almost half a millennium, is due to what Michel Faucalt (1966) called
“episteme” rather than to FLT by itself being easily provable in another episteme.

Even more, once that elementary proof has been revealed after the “Gestalt change”, it can be
translated into mathematical concepts of the standard Peano arithmetic or into those accessible in
Fermat’s age (more or less speculatively alleging what Fermat’s lost proof should be). However,
the demonstration of that extremely short syllogism in Peano arithmetic, though spectacular as a
magician to pull a rabbit out of his or her cylinder, is not especially instructive or the syllogism at
issue to be important for mathematics.

On the contrary, the Gestalt change able to transcend our organization of cognition is what is really
essential, but it cannot be represented as a syllogism, crucially depending on the individual reader's
understanding. An author such as any philosopher cannot represent that meant understanding in an
absolutely formal way (for example, as a logical syllogism also accomplishable by a Turing machine) as
far as the human being’s understanding is an individual and unique act definitively: this is a leap in one’s
mind-brain.

Instead of demonstrating sophisticated syllogisms accessible really only to several dozen
mathematicians, the current paper calls, invites, and begs for understanding just like any other
philosophical paper and unlike any mathematical study. What one should understand is the way of
transcending our modern “episteme” to a conjectural “quantum neo-Pythagoreanism”, from the viewpoint
of which the research can make sense.

XIX GLEASON’S THEOREM AND ITS PROOF
Gleason’s theorem (1957) is well-known, widely discussed, interpreted and generalized in many

ways, but never8 as to number theory or to FLT in particular. The reason is the absence of Hilbert
arithmetic (or other relevant tool for such an application), which supplies the context of their almost
obvious link as this is suggested in the previous Section XVIII. It literally states the following (Gleason
1957: 892-893):

8 At least as far as I know.



“Let be a measure on the closed of a separable (real or complex) Hilbert space of dimension atµ Ⓗ

least three. There exists a positive semi-definite self-adjoint operator of the trace class for all closed𝑇
subspaces of of𝐴 Ⓗ

µ(𝐴) = 𝑡𝑟𝑎𝑐𝑒 (𝑇𝑃
𝐴

)

where is the orthogonal projection of onto A.”𝑃
𝐴

 Ⓗ

Then, the uniqueness of follows immediately for the uniqueness of the operator of “trace”µ(𝐴)
applied to any square matrix of arbitrary dimension and can be visualized by the uniqueness of the
diagonal of any square matrix (indeed, the “left”9 diagonal of any square is single). Gleason means µ(𝐴)
to be a measure, i.e. (p. 885): “A measure on the closed subspaces means a function µ which assigns to
every closed subspace a nonnegative real number such that if is a countable collection of mutually{𝐴

𝑖
}

orthogonal subspaces having closed linear span B, then .”.µ(𝐵) =  Σ µ(𝐴
𝑖
)

Obviously, the probabilistic measure “ ” (according to the common interpretation of Gleason’s
𝐴

𝑖

𝐵

theorem) corresponds unambiguously to the measure “ ”. Then, the measure “ ” of any subspace “𝐴
𝑖

µ(𝐴
𝑖
)

” is mapped bijectively on “ ” by the operator “T”. That is: the unique measure is absolutely𝐴
𝑖

𝑃
𝐴

µ(𝐴
𝑖
)

determined by the projection of “ ” onto “ ”.𝐴
𝑖

Ⓗ

So, one can notice, that Gleason’s theorem means an almost obvious statement following immediately
from the orthogonality of all subspaces “ ” (including “ ” itself) to each other, after the countable𝐴

𝑖
Ⓗ

additivity of which is defined as “measure”.
Gleason’s way of proving is not necessary for the application of the theorem to FLT. Instead of that,

one can demonstrate the “projection” or its meaning by Hilbert arithmetic in a narrow sense in the
framework of Hilbert arithmetic in a wide sense being much more useful and relevant to the intended
objective:

Then, each subspace “ ” of “ ” is mapped bijectively onto a certain substring “ ” of “ ” where𝐴
𝑖

Ⓗ 𝑆
𝑖

Ⓢ

that “ ” can be interpreted either set-theoretically as the set, the set of all subsets of which is the set ofⓈ

all possible binary strings, or arithmetically as the binary strings of any length. Interpreting
unambiguously (by virtue of the fact that mapping of “ ” onto “ ” is a bijection) Gleason’s theoremⒽ Ⓢ

also to binary strings, one can notice that it is transformed into a trivial statement: the length of any10

binary string being substring of “ ” is unique. Meaning that obvious observation and under the crucialⓈ

condition of “ ” to be bijectively11 mapped onto “ ”, a new and elementary proof of Gleason’s theoremⓈ Ⓗ

is demonstrated, therefore again heralding how powerful the tool of Hilbert arithmetic is.
One can check what that method would state about a Hilbert space of dimension one or two: the

length of binary string really make sense neither about any alternative of a bit of information (notatable as

11 The relevant bijection needs the following peculiarity: the first three dimensions correspond to the first
bit, however the first two bits need only four rather than six dimensions and any following bit adds a
single dimension so that “n” bits correspond to “n+2” dimensions rather than to “3n” dimensions.

10 In fact, it is to consist of at least two cells, but the reason for that precision originates from the
confusion after defining a bit of information since two independent oppositions, respectively binary cells,
correspond to a bit of information. The confusion at issue is made clear in detail in another paper
(Penchev 2021 July 8).

9 “Trace” is standardly defined by the “left” diagonal of a square matrix, eventually of infinite dimension.



“0” or “1” and corresponding to Hilbert space of dimension one) nor about its two alternatives together
(corresponding to Hilbert space of dimension two). The latter consists of a single cell, interpretable also
as an “empty” qubit, i.e. a unit three-dimesional ball obviously needing three dimensions to be defined.

One can reflect on the bijection between the consecutive dimensions of Hilbert space and the
corresponding units of Hilbert arithmetic for proving Gleason’s theorem in the latter quite briefly. The
first two dimensions seem to be shareable by all dimensions greater or equal than three if that bijection
with the string of consecutive bits has been established. Then, that first two dimensions would be more
relevant to all “number-sake” pairs of both dual Hilbert spaces12.

So, the eventual proof of FLT based on the counterpart of Gleason’s theorem in Hilbert arithmetic in a
narrow sense relies on the identity of the two possible interpretations of the first two dimensions of
Hilbert space whether dual and thus idempotent, or as the first two ones in the well-ordered sequence of
all natural numbers constituting therefore a “hierarchy”.

Then, the only puzzle would be about why that equivalence cannot be extended to any other
dimensions, i.e. different than two first ones in their well-ordering. Properly, the sense in the meaning of
FLT in the sketched contexts refers to that privilege of those two first dimensions in relation to the
“equivalence of idempotency and hierarchy” (discussed in Part I, Section I). That is: why can only the
first dimensions be considered to be idempotent (dual) to each other unlike any other pair of subsequent
dimensions?

The natural and intuitive answer could be the following. If the idempotency starts from the least
element, i.e. “1”, once the relevance of the well-ordering of all natural numbers has been in advance
granted, e.g. in virtue of the Peabo axioms of arithmetic, it is not “able” to continue to any dimension
greater than two:
(1 = 1)

𝑚𝑜𝑑(2)
; (2 = 2)

𝑚𝑜𝑑(2)
;  (3 = 1)

𝑚𝑜𝑑(2)
; (4 = 2)

𝑚𝑜𝑑(2)
 ;  ...  ;  (2𝑛 − 1 = 1)

𝑚𝑜𝑑(2)
;  (2𝑛 = 2)

𝑚𝑜𝑑(2)
 

This means that just the well-ordering is what privileges the first two dimensions after it has
definitively privileged the first element as the least one. In other words, if one considers an auxiliary
well-ordering of idempotent pairs, the first pair is privileged to be the least one as a direct corollary from
the well-ordering of all elements constituting the idempotent pairs. The consideration in the last several
paragraphs is already able to refer to FLT as follows (though it will be discussed in detail in the next
Section XX):

Once Gleason’s theorem is granted in advance, one can transform it to Hilbert arithmetic since it is
valid also to the class of equivalence what any unit in Hilbert arithmetic is: even more, Gleason’s theorem
being formulated to subspaces of Hilbert space relates directly to classes of equivalence which any
subspace represents in fact. One notices that the first two dimensions are not meant after that mapping.

Then, the uniqueness of probabilistic measure to each member of a pair of Hilbert spaces is to be
investigated to be proved so: it implies for them to be incommensurable to each other even in the rigorous
arithmetic meaning (i.e. its ratio cannot be any rational number) if one translates it in terms of Hilbert
arithmetic. The same statement has been deduced in the previous Part II starting from the Kochen -
Specker: now, after it is again available, one might refer to the following exposition in Part II literally.

Of course, a proper pathway to further proof, relevant to the intentions and connotations of Gleason’s
theorem, would be much more interesting and just this is the sketched idea in the previous several
paragraphs. Then, one needs a quite rigorous proof that the property of idempotency can be related only to

12 This means: the one member of the nth pair corresponds to the nth dimension of Hilbert space, and the
other member of the same pair, to the nth dimension of the dual Hilbert space.



the first two dimensions (respectively, exponents in Fermat's equation). Besides the aforementioned rather
intuitive tenet, one can utilize the Gödel incompleteness of arithmetic (the axiom of induction) to set
theory (the axiom of infinity) in the following sense:

Starting from the dimension (exponent) of three, i.e. for “ ”, only the axiom of induction is𝑛 ≥  3
relevant therefore being inherently incomplete to the gap between dimensions (exponents) “1” and “2”
obeying the axiom of infinity since no finite series of natural numbers is able to overcome it. Then, the
problem is: why cannot the same argument be applied to the gap between “2” and “3” (and then, etc.)
following from the idea of the Gödel incompleteness?

This would imply that the inconsistency of set theory and arithmetic is preventable only by their
complementarity to each other as e.g. in Hilbert arithmetic. The observation suggests that the area related
to set theory and that of arithmetic should be distinguished in a way not to admit their simultaneous
utilization to avoid the direct contradiction (analogically to the prohibition in quantum mechanics for two
conjugate quantities to be simultaneously measured, i.e. in a single experiment).

The necessity for the “natural” order of those two areas to be exchanged in comparison with common
sense’s one is emphasized a few times in the paper until now. Common sense postulates “naturally” and
unquestionably that infinity is “more” than “finiteness” and accordingly their innate order cannot be other
than that: first, finiteness, then, infinity13. However, meaning their duality only being able to avoid their
direct contradiction if the incompleteness of arithmetic to set theory has been rejected in advance for one
reason or another, the reverse order (first, infinity, then finiteness) is admissible and even necessary to
avoid the Gödel incompleteness in a sense:

This means that one can interpret the Gödel incompleteness as a tenet by reductio ad absurdum that
only the counterintuitive order for infinity to be “less” than infinity is consistent with the condition for
them to be dual to each other. That is: their order is opposite to common sense’s natural one, and the
Gödel incompleteness is interpreted as a contradiction under the additional condition for completeness,
valid e.g. in Hilbert mathematics. So, the order is to be just infinity first in virtue of reductio ad
absurdum.

One can demonstrate that the counterintuitive order at issue does not generate the Gödel
incompleteness: the structure of Boolean algebra alone (i.e. allowing for only two idempotent dimensions,
or exponents in Fermat’s equation: either “1” or “2”) interpretable further whether as propositional logic
or as set theory does not implies incompleteness as Gödel (1930) himself showed in a sense14. Indeed, the
Gödel incompleteness cannot be placed within the idempotent pair of “1” and “2”: even repeated an
actually infinite set of times, the operation of logical negation (as an example of idempotency) cannot
transcend the only two options to be able to generate incompleteness.

Returning back to the interpretation of FLT in the context of Gleason’s theorem, one pays attention
that duality (complementarity) does not admit “infinity” to be situated anywhere among finiteness besides
either in its absolute beginning (as the first two elements) or in its absolute end, however implying the
Gödel incompleteness in the latter case, being to be rejected under the additional condition of
completeness, e.g. as in Hilbert mathematics based on Hilbert arithmetic. So, only the order of “infinity
first, then finiteness” (though extremely counterintuitive) can be relevant in the framework of Hilbert

14 Only set theory (unlike the case where arithmetic is added to set theory) as a first-order logic to
propositional logic does not contain any insoluble statement as the main result of Gödel’s earlier paper
can be interpreted in terms of the later one.

13 Cantor’s hierarchy of infinities (also conserved in the contemporary axioms of set theory) obeys the
same “natural” and ostensibly unquestionable order originating from common sense.



arithmetic therefore proving FLT exceptionally on the foundation of Gleason’s theorem once it has been
translated from the branch of the qubit Hilbert space itho that of Hilbert arithmetic in a narrow sense in
the general framework of Hilbert arithmetic in a wide sense.

XX FLT PROVED IN HILBERT ARITHMETIC BY GLEASON'S THEOREM
As the previous Part II demonstrates, the “quantum” proof tends to verify the incommensurability of

the arithmetic variables and first for and then, for . An additional check shows their𝑦𝑛 𝑧𝑛 𝑛 = 3 𝑛 ≥ 3
commensurability for This is the approach to be proved FLT starting from the Kochen -𝑛 = 1,  2.
Specker theorem after making clear that the newly introduced by them concept of partial algebra
(particularly, partial Boolean algebra being relevant to the case of FLT) relied on the binary relation of
commensurability (notated by them as “ ”) is only a “conservative” generalization of arithmetic♀
commensurability, respectively incommensurability brought the ancient Pythagoreanism to a crisis after
proving the incommensurability of the length of the diagonal of a square to its side if the side is a natural
or rational number.

So, involving the tool of Hilbert arithmetic in a wide sense, one can reversely reduce Kochen and
Specker’s proof of the absence of hidden variables in quantum mechanics to its ancient fount being

relevant to FLT. Indeed, if and for are arithmetically incommensurable to each other, their𝑦𝑛 𝑧𝑛 𝑛 ≥ 3
sum is necessarily an irrational number and no rational solution at all for Fermat’s equation meaning just
their sum.

In fact, the Kochen - Specker theorem and Gleason’s theorem are relative and this is even more
obvious after the joint degeneration to the case of Hilbert arithmetic in a narrow sense. Both mean in the
final analysis the same observation however interpreted in two different contexts though not too remote
from each other. The shared observation consists in the following equivalence: the way for an “empty”
qubit to be seen “inside” as an empty tridimensional unit ball with its volume of “ ” in the relevant4

3 π

three physical dimensions, i.e. in volume units, on one hand, and (respectively, “versus”) “outside”: as a
usual arithmetic unit and thus, one-dimensional, on the other hand.

Then, that equivalence in virtue of Hilbert arithmetic in a wide sense implies for a pair of natural
numbers, each of which consisting of one-dimensional units considered equivalently “outside”, i.e. as
tridimensional unit balls, turn out to be necessarily incommensurable to each other. The last statement is
equivalent to FLT(3) and suggests a corresponding approach to prove FLT (in the general case for any
arithmetic exponent greater than two).

Accordingly, the context of the Kochen - Specker theorem for the observation at issue rather
emphasizes that their incommensurability excludes any finite common divisor (common denominator)
different from “1”. In other words, the concept of hidden variables in quantum mechanics can be
interpreted as a generalization of “finite common divisors” in the case of arbitrary qubits if Kochen and
Specker’s approach has been granted.

In comparison with the above paragraph, the context of Gleason’s theorem highlights alternatively
sooner the analogical statement but in relation to the qubits “inside”, i.e. as tridimensional unit balls rather
than as usual arithmetic, thus one-dimesional units, meaning in the final analysis (as to the latter
arithmetic units) the trivial statement that any irrational number is equivalent to a unique infinite series of
“digits” in any positional number system (such as binary or decimal).

So, one is to infer the incommensurability of the commutative arithmetic pair “( )” for “ ”𝑦𝑛, 𝑧𝑛 𝑛 ≥ 3
from Gleason’s theorem following the already pioneered pathway started from the Kochen - Specker



theorem in the previous Part II and mediated by Hilbert arithmetic in a wide sense. It is an instant
corollary, e.g. by reductio ad absurdum:

Let “( )” for “ ” (where are two variables on all natural numbers) be commensurable.𝑦𝑛, 𝑧𝑛 𝑛 ≥ 3 𝑦,  𝑧

This means that their ratio (i.e. each of both possible ratios: ) is a certain rational number.𝑦𝑛

𝑧𝑛 ;  𝑧𝑛

𝑦𝑛

Applying the transition from the branch of Hilbert arithmetic in a narrow sense to the qubit Hilbert space
in the framework of Hilbert arithmetic in a wide sense, the assumption for them to be commensurable
implies that there exists two different measures distinguishing from each other for , and𝑚𝑎𝑥(𝑦, 𝑧)
Gleason’s theorem excludes that to be possible. One checks the option for “ ” and “ ” to coincide, which𝑦 𝑧
implies by virtue of Fermat’s equation: “ ”, which cannot be satisfied for any pair of natural𝑥 = ( 𝑛 2)𝑦

numbers since “ ” for “ ” is an irrational number. Then, “( )” for “ ” is𝑛 2 𝑛 ≥ 3 𝑦𝑛, 𝑧𝑛 𝑛 ≥ 3
incommensurable due to the rejected opposite assumption.

As aforementioned, all ways for the proof of FLT after the incommensurability of that pair has been
proved can be literally borrowed from the consideration in Part II remaining valid to Gleason’s theorem
equally well as to the Kochen - Specker theorem. What would be interesting now are other pathways for
proving the general case of FLT which originate from proper connotations of Gleason’s theorem. Those
are relied on the opposition of dimensions “ ” versus those of “ ” in Hilbert space and𝑛 = 1, 2 𝑛 ≥ 3
implying their opposition also in Hilbert arithmetic in a narrow sense: while the same opposition in the
proper limitation of Peano arithmetic seems to be mysterious and inexplicable, particularly conditioning
all troubles for proving FLT.

Utilizing again the “extraordinary” (“2:1”) bijection of Hilbert arithmetic in Peano arithmetic:

(𝑃− ⊗ 𝑃+ → 𝑃0) → 𝑃
discussed in detail in Part II, one can state that the opposition in question is due to that bijection itself just
remaining even ridiculous in the framework of Peano arithmetic alone. In other words, it is concentrated

in “ ” and only transferred in Peano arithmetic as if outside in virtue of the𝑃− ⊗ 𝑃+ → 𝑃0

“second mapping” notated by “ ”. Indeed, the first mapping “ ” means that any→ 𝑃 𝑃− ⊗ 𝑃+ → 𝑃0

natural number (in “ ”, literally) originates from a corresponding consecutive bit of information𝑃0

in an unlimited binary string (i.e. of any length). That bit being furthermore a universal condition
for the nonstandard bijection is what privileges the first two natural numbers (or “dimensions” in
the qubit Hilbert space or Gleason’s theorem), after which their privilege is only repeated in
Peano arithmetic therefore remaining mysterious and inexplicable within itself since it originates
out of it, rather even beyond it, gifting FLT with its puzzling and bewildering “transcendent
charm of Mona Lisa’s smile”.

So, the own connotations of Gleason’s theorem for proving FLT consist in the investigation
of the privilege of the first two natural numbers (or dimensions of Hilbert space) satisfying
furthermore the relation of idempotence corresponding to the function successor for all greater
natural numbers (or dimensions of Hilbert space). One can express this so: Gleason’s theorem
offers a newly invented sense (or Frege’s “Sinn”) under the same “Bedeutung” of FLT: if the
general case of incommensurability in Fermat’s equation seems natural, obvious, and even
trivial, what needs a proof is the exception for “ ”: why it takes place.𝑛 = 1, 2



Indeed, Fermat’s equation needs at least two measures to be possible for its solution. For

example, if one considers the triple (3, 4, 5) satisfying , that solution requires as its 𝑦2 + 𝑧2 = 𝑥2

necessary condition the availability of more than two measures of Hilbert space of dimension 2
meant as a subspace to itself if the solution is translated from the branch of Hilbert arithmetic in
a narrow sense (where it can coincide with Peano arithmetic, in term of which Fermat’s equation
and last theorem are formulated) into the counterpart of the qubit Hilbert space, respectively the
separable complex Hilbert space, to which Gleason’s theorem refers directly, within the shared
framework of Hilbert arithmetic in a wide sense. However, if the cases of the equation

is for , Gleason’s theorem is what excludes the necessary ambiguity of the𝑦𝑛 + 𝑧𝑛 = 𝑥𝑛 ∀𝑛 ≥ 3
measure and thus any solution in natural numbers. Thus, it is able to supply a proof for the
general case of FLT without induction or any additional arguments unlike the Kochen - Specker
theorem relatable immediately to FLT(3) properly.

Then, the application of Gleason’s theorem rather generates the question how the exception
of one or two dimensions can be interpreted and explained as to the dual branch of Hilbert
arithmetic in a narrow sense resulting in Peano arithmetic. As aforementioned, it is due to the
nonstandard bijection able to map Hilbert arithmetic into Peano arithmetic therefore remaining
beyond the latter (just to which FLT not to be proved only arithmetically during a few centuries
is owing). The same circumstance can be also revealed in the structure of Hilbert space
(particularly, in that of the qubit Hilbert space) and then repeated in Hilbert arithmetic (also
allowing for it to overcome the Gödel incompleteness without any contradiction) and absolutely
missing in Peano arithmetic itself: this is the pair of two dual counterparts, furthermore
reproduced the formal structure of a bit of information.

XXI BOTH MUTUAL INTERPRETATIONS OF GLEASON’S THEOREM INTO FLT
AND VICE VERSA

The previous Paragraph XX shows that Gleason’s theorem implies FLT as its dual
counterpart in the other branch within the framework of Hilbert arithmetic in a wide sense. The
question whether the converse implication is also valid is natural morerver in virtue of the
meaning the corresponding Hilbert subspaces as whole sets, each of which mappable just as a
whole into a certain number set whether the interval [0,1], or positive real numbers, or positive
rational numbers, or natural numbers in the final analysis as the translation into the dual branch
of Hilbert arithmetic in a narrow sense is necessary for proving FLT.

A preliminary notice is to clarify the link and consistency of the enumerated four different
cases, onto the number set of each which all subspaces of Hilbert space are supposed to be
mapped. The first case of the real or rational interval [0. 1] means just a probabilistic measure, in
terms of which Gleason’s theorem is often formulated.

Gleason’s proof deals directly with the mapping of Hilbert subspaces into the set of all
positive real numbers, from which the probabilistic measure at issue follows unambiguously in
relation to the Hilbert space itself, to which all subspaces are meant, simply as a ratio. So, what



remains to be considered are the three cases of number sets, into which Hilbert subspaces are
mapped: positive real numbers, positive rational numbers, natural numbers.

Gleason’s theorem formulated as to a unique measure of the separable Hilbert space therefore
means a countable set: so, the continuum of real numbers would be irrelevant. Thus, one can
grant the set of all natural numbers as quite sufficient and might even establish the
dimensionality of any subspace to be its measure as far as the theorem identifies the subspaces of
the same dimensions (for example as translatable collinear vectors of the same length).

Meaning that, one can interpret Gleason’s theorem as referring to Hilbert arithmetic in a
narrow sense, in fact, though literally formulated in terms of the separable Hilbert space
(including the complex one of quantum mechanics and relevant to its epistemological puzzles).
Then, FLT can be considered as an exact analogue of it after involving the nonstandard bijection
already as a kind of “nonstandard homomorphism” of Hilbert arithmetic into Peano arithmetic
their suggesting the converse implication, which can be demonstrated in detail as follows:

One regards the dual (reverse) bijection or homomorphism of Peano arithmetic in Hilbert

arithmetic, that is: , which can be furthermore visualized to each bit of the𝑃 → (𝑃0 → 𝑃− ⊗ 𝑃+)
“universal arithmetic binary string”15, in which conventionally and for example all “zeros” (the

one alternative state of a bit) are ascribed to “ ” and accordingly, all units, to “ ”, and they𝑃−  𝑃+

are interpreted as the corresponding classes of equivalence of qubits of the qubit Hilbert space as
the definition of Hilbert arithmetic needs, e.g. as tridimensional unit balls.

So, an arithmetical unit of Peano arithmetic (“1”) is mapped onto an axis of the qubit Hilbert
space (corresponding to two axes of the separable complex Hilbert space), however in way so
that all qubits share the first two “missing” or “vanishing” dimensions. This can be schematized
admissibly so: a Peano unit a bit of information both states of a bit of information shared as→ →
the same for each bit of the universal arithmetic string also relevant to Hilbert arithmetic.

Then both those states are identified as the first two “missing” or “vanishing” dimensions of
Hilbert space (which is not necessary to be limited only to the qubit Hilbert space though the
mediation of Hilbert arithmetic implies just this), for which Gleason’s theorem does not establish
a unique measure. That absence of a unique measure for them, by the by, follows obviously from
sharing the same states (“0”, “1”) of a bit, independently of its consecutive number in the string,
for all of them therefore excluding to be assigned unambiguously by virtue of the discussed
bijection and thus revealed in the underlying nonstandard bijection as two first dimensions,
furthermore relevant to all the rest, and which are necessary to distinguish the same natural

numbers as belonging either to “ ” or  “ ” accordingly.𝑃− 𝑃+

Then, the incommensurability equivalent to FLT (as this is explained above) implies the
unique measure being traceable in detail (as a little further in the text of this section) but needing
two preliminary notices meaning: (1) the distinction of FLT as an arithmetic statement versus

15 That “universal arithmetic string” has not to be identified with a doubling of the set of all natural
numbers as far as it is defined exceptionally within the framework of Peano arithmetic in order to avoid
the Gödel incompleteness after an eventual addition of set theory.



Gleason’s theorem referring to Hilbert space and thus implicitly, to set theory; (2) the
generalization to real and complex Hilbert spaces, to which Gleason’s theorem has been
formulated in original.

FLT as an eventual equivalent of Gleason’s theorem needs the proviso about its
incompleteness forced by the Gödel one. That is: it can imply Gleason’s theorem only to all
dimensions being any natural numbers, but not to the set of all dimensions being equivalent to
the set of all natural numbers.

The latter notice is to infer the case of the separable real Hilbert space from that of the
separable complex Hilbert space as a particular case after the latter is deduced from the qubit
Hilbert space as far as Hilbert arithmetic means just it definitively. Indeed, the deduction of the
real case from the complex one is obvious since any real number can be interpreted to be a
complex with a zero proper imaginary part. In turn, the separable complex Hilbert space is also a
particular case of the qubit Hilbert case if the orthogonal subspaces meant in the later are reduced

to be “successive axes” of the former, i.e. after standard notations.𝑒𝑖𝑛ω;  𝑒𝑖(𝑛+1)ω

The proof of Gleason’s theorem from FLT under the above explicit restrictions or
elucidations seems to be transparent as well. One interprets FLT as the incommensurability of the

pair of any arithmetic variables, or and if . Arithmetic in default is meant to be𝑦𝑛 𝑧𝑛 𝑛 ≥ 3
Hilbert one after the the dual nonstandard homomorphism of Peano arithmetic into Hilbert

arithmetic: “ ”, after which it is related to the qubit Hilbert space in the𝑃 → (𝑃0 → 𝑃− ⊗ 𝑃+)
framework of Hilbert arithmetic in a wide sense. Then, the incommensurability equivalent to
FLT implies the uniqueness of the (probabilistic) measure for any subspace of Hilbert space of
dimension since if it were ambiguous it would imply the commensurability at issue (i.e.𝑛 ≥ 3
within Fermat’s equation) and thus solutions for which FLT states not to exist.

So, FLT and Gleason’s theorem can be interpreted to mean the same (with the proviso above)
once Hilbert arithmetic in a wide sense has been involved in advance.

XXII FLT AND THE UNIQUENESS OF A SINGLE PROBABILITY MEASURE IN THE QUBIT
HILBERT SPACE

The partial equivalence of FLT and Gleason’s theorem can be interpreted furthermore
physically after the latter, inspired from an idea for Born’s rule for probabilities in quantum
mechanics to be proved rigorously from the standard formalism of the separable complex Hilbert
space16, is translated in terms of probabilities for quantum events to be observed or not.

16 Born’s rule determining a certain probability for a quantum event to be measured can be realized in two
ways:
(1) as the statement that any quantum event is featured by a certain value to be observed (or to “happen by
itself” in corresponding “realist” interpretations of quantum mechanics) thus delivering the generalized
scientific objectivity applicable to classical mechanics (after the classical one is not valid);
(2) as the formula assigning that unambiguous probability to any wave function inherent for a quantum
state. Already in terms of Hilbert arithmetic, the former realization is to refer to Hilbert arithmetic in a
narrow sense, and the latter, to the qubit Hilbert space, therefore both remaining in Hilbert arithmetic in a
wide sense.



Indeed, the “atom” of that equivalence, a qubit can be expounded both as “empty”, i.e. as the
class of equivalence of all values which one can measure as its possible values, or said otherwise
“before measurement”, and as any of those values after a certain measurement, i.e. “after
measurement”. One may also say that the measurement of a qubit is equivalent to the record of a
certain value “within it” or that the “reading” and “writing” of a qubit are equivalent in a sense
(just as those of a bit).

Then, Gleason’s theorem (just as Born’s rule itself) establishes the new and generalized way
for quantum mechanics to be an objective experimental science though being quite different from
that of classical physics. The latter sets that a unique value for any physical quantity in a certain
moment of time exists and just it can be called to be the real value of that quantity. Quantum
mechanics dare not state the same postulating a manifold of values measurable by the apparatus
to any quantum quantity (maybe with the single exception of time). So, the objectivity of
classical physics is inapplicable to quantum mechanics.

Nonetheless, Gleason’s theorem proves that its empirical substitution by virtue of Born’s rule
is consistent and can be discussed to be a relevant generalization: though a manifold of
measurable values is the case meant by quantum mechanics, the probability of any “point” of it
is unique and can be postulated to be the unique “objective probability”. As to a single qubit,
both reading and writing are unambiguous and can be considered to be “objective” in that sense
(though the read or written quantity is ambiguous in general).

If FLT is equivalent to Gleason’s theorem in a sense, it should share the same transformation
or generalization of what objectivity in science is, forced particularly by quantum mechanics. All
epistemological or ontological troubles of the interpretation of the latter are well-known and the
debates continue. That vanity around quantum mechanics allows for one to penetrate why FLT is
so difficult to be proved if it shares that fundamental change of what objectivity is though in an
implicit way able to be manifested only in virtue of its (partial) equivalence to Gleason’s
theorem.

One can repeat the essence of that change especially as to the proof of FLT in proper
philosophical terms. It needs the unambiguous distinction of “subject” and “object”
(respectively, “body” versus “mind”; physics versus mathematics) to be abandoned since the
unification of discreteness and continuity, for example implied by the modularity theorem if FLT
is proved as a corollary from it as Wiles did, but not less necessary for quantum mechanics to
make them consistent to each other (namely the “discrete” quantum entity and the “continuous”
apparatus measuring it and obeying the smooth laws of classical mechanics) is relevant to the
inherent link or links of the enumerated above concepts in the scope of philosophy.

In fact, the present paper and especially its first part demonstrate that the transcendence over
the Cartesian “abyss” can be omitted as a “Wittgenstein ladder” in the ultimate text of the proof
at the cost of inexplicable otherwise artificiality, for which the heuristic pathway to it turns out
be absolutely and intentionally hidden just as a magician who hides the real series of the actions
thanks to which the “rabbit has been taken out of the cylinder” to the delight of the audience.



Even more, one can conjecture (also in Part II in detail) that the option for any
trancendendence over that abyss to be abandonable is universal in the final analysis so that the
ultimate result is representable “classically”, e.g. in terms of “classical physical” or in those of
mathematics “granted to be standard”. Then, the “journey over the abyss” would be necessary
only heuristically, but not formally and logically.

One can trace that “magician art” in its “atom” of a single qubit either “empty” (in a
coherent state) or absolutely determined by a certain value (read or written). In fact, both FLT
and Gleason’s theorem as ultimate results can be related only to the former option of an “empty”
qubit (though “outside” or “inside”, accordingly). However, the heuristic pathway for both to be
proved needs the former option to be transcended by its relation to the latter, that of an absolutely
determined value and thus needing the dual branch of the qubit Hilbert space, nevertheless FLT
can be thoroughly formulated within Peano arithmetic, respectively in Hilbert arithmetic in a
narrow sense. Furthermore, the proof of each of both theorems can be accomplished in its
“native” branch as, for example, Gleason’s original proof or the proof of FLT in “Fermat’s
arithmetic” in Part I can convincingly show.

If the hypothesis about the absolute representability of any statement alleged to be
non-classical (such as those of quantum mechanics or FLT in the case) can be anyway
demonstrated formally and logically “classically”, though at the cost of some artificiality,
quantum neo-Pythagoreanism advocated during the paper is only a method of thinking rather
heuristic than logically necessary. However, nobody knows whether that conjecture is a true
statement in any case.

As to mathematics properly, the same tenet can be articulated even more discernibly. A
constructive proof for any true statement exists always in Hilbert mathematics (besides no Gödel
insoluble statements in it), but it is to be represented as a proof of existence passing into Gödel
mathematics (for example if the proof is necessary to cross the dual area of Gödel insoluble
statements).

One can stare at the relation of two probabilities which any determined value of a qubit
means and alleged to remain hidden in each arithmetic unit (“1”) after the interpretation of Peano
arithmetic by Hilbert arithmetic. Gleason’s theorem implying only a single probabilistic measure
for any string of qubits and thus also for one qubit means that it links two probabilities
unambiguously. If one follows the usual interpretation of information as relative entropy (i.e.
entropy to the entropy of another probability distribution), each qubit may mean just an
elementary relative entropy: that is a probability in relation to another probability eventually
granted to be a standard to the former probability deviating more or less from the latter.

If the “standard”17 probability has been ascribed to be “objective probability” and thus,
referring to the Cartesian “body” (“object”), the other probability linked in any qubit is to mean
“subjective probability” of the Cartesian “mind” (“subject”), or respectively, our knowledge
about the former, ostensibly real probability. Interpreted so, any qubit turns out to be a

17 It is a question of convention: which of both probabilities to be proclaimed as a “standard”.



generalization of the usual episteme of Modernity and what is generalized can be enumerated as
follows:

Two fundamental philosophical entities are distinguished, but which is “body” and which is
“mind” is absolutely conventional: only its relation embedded in each qubit is what can be
rigorously and unambiguously defined. The same relativity can be seen also as a universal
invariance: already invariant even to the pair of subject and object finishing the modern
development in physics to more and more general invariances (a direction especially discernible
in Einstein's theories of relativity), and thus that of objectivity being understood as that
extending invariance.

Any qubit is furthermore a relation just of probabilities therefore substituting the classical
idea of “fact” with that of the corresponding idea about the probability of a fact and as if
“undermining” what “fact” is as far as the classical fact needs always the absolute reliability of
being tautologically true. Any qubit can be considered to be an elementary fact if “fact” has been
generalized in advance as above.

Kronecker’s slogan that “Natural numbers were created by God, everything else is the work
of men” (Weber 1893: 15; Kneser 1925: 221) can be already justified otherwise rather than as
“God’s creation”. Indeed, if one continues the direction of generalization followed to be
constituted the concept of “qubit” meant as an elementary (“postmodern”) fact, the next
generalization would be to be the independence of any given fact of that kind, i.e. the fact at all,
which can be identified as an empty qubit, and following the intentions and objectives of Hilbert
arithmetic, as a natural number  in fine as well.

Summarizing those considerations, one can reveal the reason for proving FLT so difficulty in
the misunderstanding of what the natural numbers are (since it is a statement in terms of them),
for example, as Kroneker postulating them to be God’s creation therefore “closing the door” for
investigating their real origin. Speaking rather loosely or aphoristically, FLT needs the reason for
natural numbers to appear not by virtue of God’s will but following scientific methods. They
originate from the generalized “facts at all” after the latter have been realized to be qubits after
quantum information.

Said even more metaphorically, one needs a few aphorisms to precede the first two ones in
Wittgenstein’s “Logisch-Philosophische Abhandlung” (1921, in English “Tractatus Logico -
Philosophicus”), which are: “1. Die Welt ist alles, was der Fall ist. 1.1. Die Welt ist die
Gesamtheit der Tatsachen, nicht der Dinge”18 since the natural numbers should be before “facts”
meaning the same as “the world is all”: or at least, should mediate after the former, but before the
latter statement. If, on the contrary, the origin of the natural numbers is “7. Wovon man nicht
sprechen kann, darüber muss man schweigen”19, FLT cannot be proved during a few centuries.

19 “Whereof one cannot speak, thereof one must be silent” or “What we cannot speak about we must pass
over in silence” in English according to according to the bilingual edition (1918) available at (2022.06.07
accessed): http://people.umass.edu/klement/tlp/ (2022.06.07 accessed).

18 “The world is everything that is the case.The world is the totality of facts, not of things” or “The world
is all that is the case. The world is the totality of facts, not of things” in English according to the bilingual
edition (2018) available at: http://people.umass.edu/klement/tlp/ (2022.06.07 accessed).

http://people.umass.edu/klement/tlp/
http://people.umass.edu/klement/tlp/


XXIII THE IDEA OF QUANTUM NUMBER THEORY INSPIRED BY THE PROOF OF
FLT FROM THE KOCHEN - SPECKER THEOREM OR GLEASON’S THEOREM

Hilbert arithmetic involved for proving FLT as the paper demonstrates can be also realized as
a method for problems in number theory, which can be called “quantum number theory” for the
utilization of the qubit Hilbert space as well as the separable complex Hilbert space as relevant
tools. The reasons can be divided into two groups: (1) Hilbert arithmetic is suitable for
investigating statements for which one can prove that they belong to the class of the Gödel
insoluble proposition if set theory along with arithmetic is forced to be used for their solution; (2)
Hilbert arithmetic in a wide sense suggests an instrument similar to infinitesimal calculation, but
generalizing it20 in a way quite relevant to arithmetic being inherently discrete so that both
discrete and continuous (smooth) description are unified.

(1) As one can see in Part I, FLT obeys Yablo’s paradox and thus, it is a Gödel insoluble
statement if one needs set theory together with arithmetic for its proof, on the one hand. On the
other hand, set theory seems to be inevitable for the proof as it is to mean the infinite set of all
cases of Fermat’s equation for exponents greater than two. The only way for Peano arithmetic to
prove so general statements is induction in virtue of the axiom of induction but conflicting with
the axiom of infinity in set theory just in relation to all natural numbers: each of which is finite
according to the former, but the set of them being infinite according to the latter. In the final
analysis, this contradiction itself is what generates the Gödel incompleteness (to be avoided) in
the framework of the Gödel dichotomy of arithmetic to set theory: either incompleteness or
contradiction.

However, the application of the axiom of induction to FLT seems to be impossible at first
glance since Fermat’s equation involves the sum of two exponents though they are equal. Hilbert
arithmetic hints how that obstacle can be overcome even remaining thoroughly in the framework
of Peano arithmetic.

Summarizing, one can utilize Hilbert arithmetic and therefore its inherent completeness
where the idea of a set-theoretical proof of an arithmetic proposition has to be “retold” only in
terms of induction, e.g. for getting rid of the Gödel incompleteness.

(2) A strange and rather inexplicable empirical fact is that many very difficult problems in
number theory can be elegantly resolved involving the infinitesimal analysis of complex
variables not having any relation to their formulation only in terms of arithmetic. Furthermore,
quantum mechanics turned out to be forced to reveal a general method for unifying the discrete
description of any quantum entity “by itself” due to the fundamental Planck constant with the
smooth description of the apparatus and its readings obeying classical mechanics or physics.

The separable complex Hilbert space able to unify Schrödinger “ondulatory mechanics” with
Heisenberg’s “matrix mechanics” can be interpreted to be that general method, thus relevant
rather to mathematics than to physics (just as Newton’s infinitesimal calculation is relevant to

20 The viewpoint to Hilbert arithmetic as a generalization of infinitesimal calculus is suggested in more
detail in another paper (Penchev 2021 February 25); then applied to the problem of mathematical history
(Penchev 2020 December 14).



mathematics though he used it for its physical theory of gravitation). As this is very well known,
infinitesimal analysis is the main method nowadays for creating mathematical models of various
processes taking place over time, not only physical ones.

One can mull the way for any discrete experimental or empirical data (as far as the result of
any measurement is a rational number) to be always thought as interpretable by a relevant system
of smooth (thus continuous) differential equations, to which the mathematical model built by
intestinal analysis can be usually reduced. Indeed, any transition from those data to the model at
issue would encounter the Gödel incompleteness, which can be discovered in any limit (a real or
complex number in general usually) approached by an enumerated series of experimental data
though becoming more and more precise:

The observed data are always a finite series of finite (rational) numbers. Even if one ascribes
to the model as an infinitely close real number as a limit of the data, this cannot prevent the gap
of the Gödel incompleteness between them. The transition to any model cannot be ever justified.
It needs a human being to establish just this model rather than another since no model follows
logically and rigorously from the data21.

However, that abyss between data and the corresponding model is never considered to be a
problem since it is granted in the organization of any possible knowledge or cognition in
Modernity therefore guaranteeing the figure of human as an unavoidable arbiter to judge whether
a model and reality (data) correspond to each other or not.

In other words, the Gödel incompleteness or dichotomy is only a mathematical paraphrase of
the modern episteme relying rather on the conviction of its validity than on logical and
mathematical arguments22. The Gödel incompleteness can be also revealed in any physical
motion or in the unfoundedness of any logical conclusion as, for example, the ancient aporia
about Achilles and the Tortoise or its interpretation by Lewis Carroll can demonstrate (Penchev
2021 November 18).

There exists even the temptation to suggest that the initial and fundamental unfoundedness of
modern cognition is intentionally supported to provide the dominance of human society and it
hierarchy over nature and the world as far as a human decision independent of any logical
justification is obligatory for any statement originating from data to be heralded for truth. One
can admit further that FLT needing for its proof the boundary of the modern organization of
cognition to be transcended is a relevant symbol of modern episteme underlain by the figure of
human and “capability of judgment” embedded in the foundation of objectivity: objective
cognition and knowledge.

However, quantum mechanics has been forced to invent an implicit alternative approach to
what condition should hold in order to be able to resolve the main problem in its framework:

22 The idea is formulated for the first time in an earlier paper (Penchev 2010).

21 This is a widely exploited motif in Western philosophy, for example as a criticism of whether induction
as “Hume’s problem” (e.g.: Belkind 2019; Jackson 2019; Biondi, Groarke, eds. 2014; Qu 2014; Steel
2010; Tucker 2009; Hetherington 2008; Weintraub 2008; 1995; Loeb 2006; Okasha 2005; 2003; Boulter
2002; Lipton 2002; Helm 1993; Jakobson 1987; Parush 1977) or causality as “Hume’s theory” of it (e.g.:
Henschen 2018; McBreen 2007; Watkins 2005; 2004; Jakobson 1986; Röd 1983; Ducasse 1966).



how both discrete and continuous descriptions of quantum reality and its data can be unified. The
“capability of judgment” cannot be more a privilege only of human beings. It has be shared even
with any electron, a corollary from quantum mechanics generated the famous words of Einstein
(1926) in a letter to Born that “God does not play dice”, and why the thought about an electron
deciding its behavior is so unbearable for him so better to be a “croupier in a gambling house or
a shoemaker rather than a physicist” if that is the case.

Alas, the “free will theorems” (Conway, Kochen 2006; 2009) deduce rigorously logically and
mathematically from a few standard statements of quantum mechanics and special relativity that
if the experimenter, a human being, is gifted by free will, he or she has to share that “valuable
commodity” with the observed quantum entity, for example an electron as meant by Einstein.

The revolution of quantum mechanics in relation to what cognition is to be consists just in
the deprivation of the privilege of all human beings to be the only judges able to decide which is
true and which is not. The capability of judgment should be “democratized” and extended to
cover even “electrons”. Einstein is absolutely correct that the formalism of quantum mechanics
(granting his own theory of special relativity) implies the “free will of electron” in fine and just
that is precisely inferred by Conway and Kochen.

Also one can stare at the separable complex Hilbert space to reveal where exactly is
embedded “the electron’s free will” to show that FLT has not been proved for a few centuries just
because the “gifting of all electrons with free will” has been so “unbearable” for all scientists as
for Einstein, indeed contradicting fundamentally the modern organization of cognition. On the
contrary, if one dare gift the “electrons” with free will, the proof of FLT turns out to be sooner
elementary and therefore needing rather philosophical efforts for changing the Gestalt than
mathematical skills for a long enough syllogism however within common sense’s Gestalt.

A drama of ideas can be embodied in a plot involving Descartes and Fermat (being ten years
younger) as personages. For example, Descartes created Cartesianism establishing the gap
between “body” and “mind” able to be overcome only by God, and practically, by God's
vicegerent on earth, i.e. any human being. Once that had been done, Fermat’s proof of his last
theorem should be lost for its sense contradicted the modern episteme as it had been founded by
Descartes before that. That is the present paper tends to clarify why the thought “unbearable” to
Einstein for the electron’s free will along with that of any human being contributes the proof of
FLT; as well as it even conjectures a hypothetical proof of FLT, accessible to Fermat (in Part I).

The ultimate human decision eventually changeable by some next human decision is replaced
by an abstract choice (also mathematically guaranteed by the axiom of choice) as if by the
universe itself as a whole and thus by any electron not less than by any human being. The
dominance of humankind is dethroned. Human chauvinism is not more than another illusion
rejected by science as ridiculous nonsense due to ignorance. So, if one abandons the myth of
human uniqueness in comparison with e.g. an electron (i.e. according to the thought so
unbearable to Einstein) FLT is easily provable, extending and generalizing that conclusion of
quantum mechanics.



In other words, the alleged difficulty for proving FLT is rather ostensible or “ideological”
since the only obstacle is the “ideology of human uniqueness” underlying and supporting
furthermore all the building of modern cognition and the refusal of which is “unbearable” even
for one of the greatest minds as Einstein. On the other hand, that circumstance can explain rather
the philosophical (ор “anti-ideological”) style of the present paper since a relatively simple proof
of FLT also accessible even to Fermat needs the philosophical reflection of common sense’s
prejudice and human self-admiration.

The “atom” of that abstract choice originating from all entities in the universe, and also from
humankind only within that framework, is any qubit, the unit of the generalized, quantum
information linking unambiguously two probabilities and interpretable e.g. as the relation of a
probability originating from any entity in the universe to the same probability where all entities
or the universe as a whole contribute to it.

That realization of a qubit can elucidate why its idea is inconsistent with the “ideology of
human chauvinism” privileging all human decisions at the expense of the (only fictional)
deprivation of any entity’s irrevocable participation in the right to choose the “Tao of the
universe”. The universe is democratic and humankind is only a “crazy” entity among all, madly
imagining to be unique by the domination over others. In fine, humankind is the “Nude King”
dressed in the missing clothes of his majesty.

Once, the conception of qubit has been postulated in the foundations of the universe,
furthermore coinciding with those of both mathematics and physics in quantum
neo-Pythagoreanism, that of an arithmetic unit can be naturally understood as originating from
that of qubit, e.g as an “empty” qubit and the pathway to Fermat’s “lost proof” can be already
pioneered, however necessarily “sacrificing” humankind’s “insanity” described above, or really
rather, “recovering” from it.

Accordingly, quantum number theory utilizing the qubit Hilbert space (or respectively, the
separable complex Hilbert space of quantum mechanics) investigates rigorously logically and
mathematically what has been mythologized and tabooed by the ideology of human chauvinism
as the ostensibly unrepealed “prerogative of human decision” and representable, for example
and in particular, as the Gödel incompleteness of arithmetic to set theory. The elementary proof
of FLT needs that area (then defined as non-arithmetic, but set-theoretical) to be involved at least
heuristically since it can be abandoned finally in the ultimate result as a “Wittgenstein ladder”.

If one compare the tool of Hilbert arithmetic with that of infinitesimal analysis invented by
Leibniz and Newton, and as to the latter, in order to be applied to his physical theory published
as “Philosophiæ Naturalis Principia Mathematica”, the corresponding generalization can be
realized as follows, consisting in the substitution of the transition to the infinitesimal limit
(model) of observable data by the quantum complementarity or mathematical duality of the
model and data:

The transition from the discrete data to the classical smooth model being, logically and
consistently impossible for the Gödel incompleteness and needing always a human arbiter, is
replaced by their complementarity and duality, both being complete and involving a universal



and omnipresent concept of “choice” and “decision” not originating from human beings.
Properly and mathematically, the substitution consists in a probability (eventually, density)
distribution mediating between the discrete data (such as data referring to quantum entities and
studied by quantum mechanics) and representable by a wave function, which is the characteristic
function of the corresponding probability distribution (known and studied for a long time in
probability theory).

Speaking more or less figuratively, the Gödel incompleteness in the case (i.e. that situated
between quantitative data and any mathematical model) is described quite rigorously, but
probabilistically thus not needing any human “judge” to decide for the eventual conflict between
them. This can be visualized rather instructively by the application of infinitesimal analysis to
model any temporal process implying a certain function of time derivative and thus the quantity
of “time”, whether to the process at issue or universally, as a necessary condition for any time
derivative.

On the contrary, quantum mechanics cannot consistently involve time as an operator in
Hilbert space at least to the investigated quantum entity “by itself” and that fact is well known
being expressly articulated yet e.g. by Pauli (1980: 63, footnote 2). The reason for that additional
distinction from classical mechanics is fundamental. Quantum mechanics can be interpreted as
that it investigates how time appears “ex nihilo” unlike classical mechanics, for which time
“ready-for-use” is supposed to be available in advance.

Then, the mathematical formalism of the relevant Hilbert space, furthermore tested and
corroborated in all experiments of quantum mechanics, can represent the way for time to come
into being as to any process modeled to be temporal by classical physics or other exact sciences.
For example, the “Big Bang”, the temporal beginning of the universe, in fact as it suggested by
classical physics, enumerating within which also general relativity, by means of that time
“ready-for-use”, being furthermore a necessary condition for all models offered by it, can be
consistently realized only by quantum mechanics alone, by a probabilistic description in the
mysterious and contradictory moment of the “zero time”. That time necessary for any
representation of classical physics can be relevant only “later”, i.e. after a finite interval of time
after the “zero time” of the Big Bang23.

However, the present paper demonstrates furthermore, that the same mechanism (though
slightly modified as the qubit Hilbert space after quantum information) able to make clear the
genesis of time itself, can be applied (and this is maybe the main idea of quantum number theory
sketched now) to the genesis of (Peano) arithmetic itself (a problem relevant to Husserl’s
intellectual background and especially, to his quite newly approach shown in “Logical
investigations”: Penchev 2021 July 26; Penchev 2020 June 29).

23 In fact, if one wishes to investigate the “zero time” of the universe by classical infinitesimal methods
(for example, the “right” time derivative unlike the “left” one exists anyway), the Big Bang would rather
represent an integral of all decoherence in the universe, a viewpoint discussed in more detail in another
paper (Penchev 2020 August 31).



Though FLT is thoroughly formulated in a kind of arithmetic “ready-for-use” (for example,
as it is axiomatized by Peano), its proof (at least heuristically) needs a penetration into how
arithmetic can appear “ex nihilo” (though that understanding can be abandoned in the ultimate
proof as long as one comes to terms with the artificiality of the latter), but by means of Hilbert
arithmetic in a wide sense and following the methods and thesaurus elaborated by quantum
mechanics for quite different objectives, but only at first glance.

This implies furthermore a reinterpretation and re-realization of quantum mechanics able to
deliver a general theory of genesis even “before time”, the concept of which suggests that the
genesis at issue had been over “before” it appeared. Indeed, quantum mechanics has identified
itself only with a particular application of that general theory of genesis and referring to the
genesis of the readings of the macroscopic apparatus reflecting a microscopic quantum system
by itself.

XXIV INSTEAD OF CONCLUSION: BOTH IDEMPOTENCY AND HIERARCHY
AFTER FLT PROVED IN HILBERT ARITHMETIC

The introduction of the paper (in Part I) considers the fundamental relation of idempotency
and hierarchy and interprets it philosophically, by means of scientific transcendentalism, as the
most general and initial relation originating from the postulate of the totality. To the viewpoint
sketched in the introduction, the entire text after it makes clear that the proof of FLT needs as a
necessary condition, whether explicitly or implicitly, that relation of completeness; or vice versa:
in Gödel mathematic being inherently incomplete and just as still one embodiment of Cartesian
dualism, it is unprovable, as one can show by Yablo’s paradox, and any real proof such as
Wiles’s transcends obligatorily though eventually secretly and shyly in order the “Boeotians” or
common sense not to feel and notice that it is inconsistent with the general organization of
cognition in Modernity therefore announcing in fact one of the most fundamental scientific
revolutions of all times (though its beginning has been already heralded for about a century by
quantum mechanics, but now extended to mathematics and philosophy).

The last Section XXIII, seen as the ultimate result of the same course of thought penetrating
the entire text, discusses the generalization of Hilbert arithmetic as a research of how Peano
arithmetic appears absolutely “ready-for-use”, hiding its origin and the way to be elaborated.
This section being “instead of a conclusion” intends to link the beginning of the paper with its
last section as a circular structure claiming to be a “hermeneutic circle”. In other words, the idea
is the process in which arithmetic comes into view to be reflected and re-interpreted in terms of
idempotency and hierarchy and its whole as completeness.

The creation of arithmetic can be simultaneously realized properly philosophically, as a
general doctrine of how hierarchy arises in a way to hide its origin and elaboration, i.e. as if
“ready-for-use” but only by the mediation of idempotency, and speaking metaphorically, by the
“murder of its twin” been equally possible and idempotent to it. This can be expressed also
otherwise, mathematically and by means of the nonstandard bijection though it has been

formulated only in relation to arithmetic and its dual branches as above: “𝑃 → (𝑃0 → 𝑃− ⊗ 𝑃+)



& ” where P (also modified by the several indexes) means “Peano (𝑃+ ⊗ 𝑃− → 𝑃0) → 𝑃
arithmetic”, which now is to be generalized rather philosophically as the concept of hierarchy
though remaining homomorphic to Peano arithmetic. This can be illustrated only by the

replacement with a symbol called to mean “hierarchy”, e.g. by “H”: “ &𝐻 → (𝐻0 → 𝐻− ⊗ 𝐻+)

”. (𝐻+ ⊗ 𝐻− → 𝐻0) → 𝐻
Then one can notice that the homomorphism of hierarchy to Peano arithmetic is

“rudimentary”, accidental and redundant in that sense because the arithmetic operations of
addition and multiplication though formally definable for a hierarchy are rather meaningless to
its essence. This can be traced back to its origin in Dedekind’s paper “Was sind und was sollen
die Zahlen?” (1988), by the by, cited expressly by Peano (1989: 5) in his study about the axioms
of arithmetics24.

Then, all natural numbers can be understood to be an abstract well-ordering following from
the axiom of choice in virtue of its equivalency to the well-ordering theorem. Indeed, that
well-ordering in turn implies the usual arithmetic and just that fact had been inspired Peano for
his famous concise list of axioms, which are to be rather related to that abstract well-ordering
meant by Dedekind and from which arithmetic can be deduced as a “side effect” or an “artifact”
once that abstract well-ordering has be introduced in advance.

So, the concept of hierarchy is to be related to Dedekind’s abstract well-ordering though it is
homeomorphic to Peano arithmetic, but the last circumstance is inessential to hierarchy though
being formally relevant. Thus, the sense of how (Peano) arithmetic appears from Hilbert
arithmetic is to be reduced to its philosophical core of the way of any hierarchy to come into
being, relevant furthermore to its change, after which hierarchy doubles itself therefore vanishing
and then “crystallizes” into a new one. Only those segments of hierarchy, which will be changed,
need be doubled, passing into an intermediate amorphous state of “missing hierarchy” to the new
one.

If one restricts the consideration only to Hilbert arithmetic in a narrow sense the counterpart
of the hierarchy at issue is unambiguously determined to be the anti-isometric one, thus both
being idempotent to each other. Any pair constituted in this way can be interpreted as a bit of
information and the state of vanishing hierarchy to be substituted by another corresponds to
erasing the value (e.g. either “0” or “1”) in a binary cell in order to record a new one.

However, if one generalizes the discussion in the framework of Hilbert arithmetic in a wide
sense, the counterpart of the hierarchy at issue cannot be more determined unambiguously
therefore being able to be any different hierarchy under an additional condition to be different
enough from the former one and needing moreover to be further formulated quantitatively and
mathematically in a future work.

The latter case admits a very essential and important visualization by the way for arising a
new biological entity after a sexual fusion of two different enough DNA (possibly RNA)
originating from both female and male parents. Indeed, a male hierarchy and a female one

24 Another paper (Penchev 2020 August 25) traces back that link in detail.



constitute a child DNA (RNA) consisting of only four “letters” (adenine, cytosine, guanine, and
thymine; or uracil, and for thymine in RNA) being supposedly the minimal sufficient number of
letters for sexual reproduction. This can be even proved rigorously (Penchev 2020 July 17) and
mathematically inherently linked to the famous mathematical problem about the four colors for
any (geographical) map (respectively, “mapping” in the exact mathematical meaning).

The same example can make clear the meaning of “different enough” as to the two
interacting hierarchy to create a new one: indeed, both parents should belong to the same
biological species or eventually, to two different, but sufficiently close and able to create a viable
generation. So the sense of “two different enough hierarchy” has to be understood as an
admissible interval of difference therefore possessing both lower and upper limits rather than
only a lower one.

Meaning the last observation heuristically and in relation to the corresponding operator in the
qubit Hilbert space, able to transform the DNA of the female parent in that of any DNA
belonging to an admissible male partner for a viable generation (not necessarily being a
Hermitian one), one can define “continuity” even to discrete transformations in a generalized
(again probabilistic) mathematical meaning furthermore reducible to the standard definition of
mathematical continuity, e.g. by the limit of an enumerable sequence of members.

The suggested example by the sexual fusion of two different, male and female DNA (RNA)
illustrates how wide the horizon suggested by the context of the proof of FLT in Hilbert
arithmetic can be. Indeed, its framework is able to include even areas seeming to be rather
remote from scientific transcendentalism immediately applicable to physics: namely that of
sexual reproduction (or even: mutations due to reproduction) belonging to genetics and more
loosely, to biology.



REFERENCES:
Belkind, O. (2019) “In defense of Newtonian induction: Hume’s problem of induction and the
universalization of primary qualities,” European Journal for Philosophy of Science 9 (1): 1-26.
Benavoli, A., A. Facchini, M. Zaffalon (2017) “A Gleason-Type Theorem for Any Dimension Based on
a Gambling Formulation of Quantum Mechanics,” Foundations of Physics 47 (7): 991-1002.
Billinge, H. (1997) “A Constructive Formulation of Gleason's Theorem,” Journal of Philosophical Logic
26 (6): 661-670.
Biondi, P.C., L.F. Groarke, eds. (2014) Shifting the Paradigm Alternative Perspectives on Induction
(Philosophical Analysis 55) Berlin -Boston: De Gruyter.
Boulter, S. J. (2002) “Hume on Induction: A Genuine Problem or Theology's Trojan Horse?” Philosophy
(Cambridge University Press) 77 (299): 67—86
Buhagiar, D., E. Chetcuti, A. Dvurečenskij (2009) “On Gleason’s Theorem without Gleason,”
Foundations of Physics 39 (6): 550-558.
Busch, P. (2003) “Quantum States and Generalized Observables: A Simple Proof of Gleason’s Theorem,”
Physical Review Letters 91 (12): 120403(4).
Bussotti, P., C. Tapp (2009) “The influence of Spinoza’s concept of infinity on Cantor’s set theory,”
Studies in History and Philosophy of Science Part A 40 (1): 25-35.
Campos, R.A., C.C. Gerry (2002) “A single-photon test of Gleason's theorem,” Physics Letters A 299
(1): 15-18.
Carruthers, P. A. (1984) “”Hidden-Variable Theories and Gleason's Theorem,” in (E.G. Beltrametti, G.
Cassinelli, eds.) The Logic of Quantum Mechanics (Chapter 25). Cambridge: University Press, pp.
265-276: in (Rota G.-C.) Encyclopedia of mathematics and its applications (Volume 15).
Chevalier, G., A. Dvurečenskij, K. Svozil (2000) “Piron's and Bell's Geometric Lemmas and Gleason's
Theorem,” Foundations of Physics 30 (10): 1737-1755.
Conway, J., S. Kochen (2006) “The Free Will Theorem,” Foundations of Physics 36 (10): 1441–1473.
Conway, J., S. Kochen (2009) “The Strong Free Will Theorem,” Notices of the AMS 56 (2): 226-232.
Cooke, R., M. Keane, W. Moran (1985) “An elementary proof of Gleason's theorem,” Mathematical
Proceedings of the Cambridge Philosophical Society 98 (1): 117-128.
Dauben, J.W. (1979) “Georg Cantor's Creation of Transfinite Set Theory: Personality and Psychology in
The History of Mathematics,” Annals of The Lyceum of Natural History of New York 321: 27-44.
Dauben, J.W. (1983) “Georg Cantor and the Origins of Transfinite Set Theory,” Scientific American 248
(6): 122-131.
Dauben, J.W. (2005) “Georg Cantor, paper on the ‘Foundations of A General Set Theory’ (1883),” in: (I.
Grattan-Guinness, ed.) Landmark Writings in Western Mathematics 1640-1940. Amsterdam: Elsevier,
pp. 600-612.
Dedekind, R (1888) Was sind und was sollen die Zahlen? Stetigkeit und Irrationale Zahlen
(Herausgeber: Stefan Müller-Stach). Berlin, Springer Spektrum, 2017.
De Zela, F. (2016) “Gleason-Type Theorem for Projective Measurements, Including Qubits: The Born
Rule Beyond Quantum Physics,” Foundations of Physics 46 (10): 1293-1306.
Drisch, T. (1979) “Generalization of Gleason's theorem,” International Journal of Theoretical Physics 18
(4): 239-243.
Ducasse, J.S. (1966) “Critique of Hume's Conception of Causality,” The Journal of Philosophy 63 (6):
141-148.



Dvurečenskij, A., L. Mišík (1988) “Gleason's theorem and completeness of inner product spaces,”
International Journal of Theoretical Physics 27 (4): 417-426.
Dvurečenskij, A. (1987) “New look at Gleason's theorem for signed measures,” International Journal of
Theoretical Physics 26 (3): 295-305.
Dvurečenskij, A. (1993) Gleason’s Theorem and Its Applications (Series: Mathematics and Its
Applications 60). Dordrecht: Springer Netherlands (Kluwer).
Dvurečenskij, A. (1993) “Gleason's theorem and completeness criteria,” International Journal of
Theoretical Physics 32 (120): 2377-2388.
Dvurečenskij, A. (1996) “Gleason's theorem and Cauchy's functional equation,” International Journal of
Theoretical Physics 35 (12): 2687-2695.
Edalat, A. (2004) “An Extension of Gleason's Theorem for Quantum Computation,” International
Journal of Theoretical Physics 43 (7-8): 1827-1840.
Eilers, M., E. Horst (1975) “The theorem of Gleason for nonseparable Hilbert spaces,” International
Journal of Theoretical Physics 13 (6): 419-424.
Einstein, A. (1926) “Letter to Max Born, 16 December 1926,” in: Albert Einstein Max Born Briefwechsel
1916 – 1955 (kommentiert von Max Born). München: Nymphenburger Verlagshandlung, 1969, pp.
129-130.
Flatt, K.; S. M. Barnett, S. Croke (2017) “Gleason-Busch theorem for sequential measurements,”
Physical Review A 96 (6): 062125(7).
Gleason, A. M. (1957) “Measures on the closed subspaces of a Hilbert space,” Indiana University
Mathematics Journal 6 (4): 885–893.
Gödel, K. (1930) “Die Vollständigkeit der Axiome des logischen Funktionen.kalldils.” Monatshefte der
Mathematik und Physik 37 (1): 349-360.
Held, C. (2009) “Gleason's Theorem,” in: (D. Greenberger, K. Hentschel, F. Weinert, eds.) Compendium
of Quantum Physics (Chapter 79) pp. 263-266.
Hellman, G. (1993) “Gleason's Theorem is not Constructively Provable,” Journal of Philosophical Logic
22 (2): 193-203.
Helm, B. W. (1993) “Why We Believe in Induction: Standards of Taste and Hume's Two Definitions of
Causation,” Hume Studies 19 (1): 117-140.
Henschen, T. (2018) “Kant’s Refutation of Hume’s Position on Causality,” in: (V. L. Waibel, M. Ruffing,
D. Wagner, S. Gerber, eds.) Kant Gesellschaft Natur und Freiheit Akten des XII. Internationalen
Kant-Kongresses (Band 4) Berlin: De Gruyter, pp. 1485-1493.
Hetherington, S. (2008) “Not Actually Hume's Problem: On Induction and Knowing-How,” Philosophy
(Cambridge University Press) 83 (4): 459-481.
Hrushovski, E. I. Pitowsky (2004) “Generalizations of Kochen and Specker's theorem and the
effectiveness of Gleason's theorem,” Studies in History and Philosophy of Science Part B: Studies in
History and Philosophy of Modern Physics 35 (2): 177-194.
Isham, C. J., N. Linden, S. Schreckenberg (1994) “The classification of decoherence functionals: An
analog of Gleason’s theorem,” Journal of Mathematical Physics 35 (12): 6360-6370.
Jackson, A. (2019) “How to Solve Hume's Problem of Induction,” Episteme 16 (2): 157-174.
Jakobson, A.L. (1987) “The Problem of Induction: What is Hume's Argument?” Philosophical Quarterly
(Blackwell Publishing) 68 (3-4): 265-284.
Jakobson, A.L. (1986) “Causality and the Supposed Counterfactual Conditional in Hume's Enquiry,”
Analysis (John Wiley and Sons) 46 (3): 131-133.



Jane, I. (2010) “Idealist and Realist Elements in Cantor's Approach to Set Theory,” Philosophia
Mathematica 18 (2): 193-226.
Kanamori, A. (1996) “The Mathematical Development of Set Theory from Cantor to Cohen,” Bulletin of
Symbolic Logic 2 (1): 1-71.
Kneser, A. (1925) “Breslau, Leopold Kronecker. Rede, gehalten bei der Hundertjahrfeier seines
Geburtstages in der Berliner Mathematischen Gesellschaft am 19. Dezember 1923,” Jahresbericht der
Deutschen Mathematiker - Vereinigung 33: 210-228.
Косhеn, S., Е. Sресkеr (1967) “The proЬlem of hidden variables in quantum mechanics,” Physical
Review А 17 (2): 59- 87.
Kolmogorov, A. (1933) Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin: Julius Springer.
Loeb, L.E. (2006) “Psychology, Epistemology, and Skepticism in Hume's Argument about Induction,”
Synthese 152 (3): 321-338.
Lipton, P. (2002) Hume's Problem: Induction and the Justification of Belief,” The British Journal for the
Philosophy of Science 53 (4): 579-583.
Marlow, T. (2006) “Bayesian analog of Gleason’s theorem,” Journal of Mathematical Physics 47 (12):
122101(12).
Marques, J. O. A. (2012) “The relation between the general maxim of causality and the principle of
uniformity in Hume's theory of knowledge,” Manuscrito 35 (1): 85-98.
Matvejchuk, M. (1997) “Gleason's Theorem in a Space with Indefinite Metric,” Mathematische
Nachrichten 184 (1): 229-243.
Mayberry, J. (1977) “The Consistency Problem for Set Theory: An Essay on the Cantorian Foundations
of Mathematics” (I & II) The British Journal for the Philosophy of Science 28 (1) & (2): 1-34 & 137-170.
McBreen, B. (2007) “Realism and Empiricism in Hume's Account of Causality,” Philosophy (Cambridge
University Press) 82 (321): 421-436.
Moretti, V., M. Oppio (2018) “The Correct Formulation of Gleason’s Theorem in Quaternionic Hilbert
Spaces,” Annales Henri Poincaré 19 (11): 3321-3355.
Mushtari, D. (1998) “Gleason-Type Theorem for Linear Spaces over the Field of Four Elements,”
International Journal of Theoretical Physics 37 (1): 127-130.
Mushtari, D. Kh. (1998a) “The Gleason theorem for the field of rational numbers and residue fields.”
Mathematical Notes 64 (4): 506-512.
von Neumann, J. (1932) Mathematische Grundlagen der Quantenmechanik. Berlin: Springer,
pp. 167-173.
Nishimura, H. (1994) “A boolean-valued approach to Gleason's theorem,” Reports on Mathematical
Physics 34 (2): 125-132.
Okasha, S. (2005) “Does Hume's Argument against Induction Rest on a Quantifier-Shift Fallacy?”
Proceedings of the Aristotelian Society 105 (1): 237-255.
Okasha, S. (2003) “Probabilistic Induction and Hume's Problem: Reply to Lange,” The Philosophical
Quarterly 53 (212): 419-424.
Orey, S. (1956) “On the Relative Consistency of Set Theory,” Journal of Symbolic Logic 21 (3):
280-290.
Parush, A. (1977) “Is Hume a Sceptic About Induction?: On a Would-be Revolution in the Interpretation
of Hume's Philosophy” Hume Studies 3 (1): 1-16.
Pauli, W. (1980) General Principles of Quantum Mechanics. Berlin - Heidelberg - New York: Springer.
Peano, G. (1889) Arithmetices principia: nova methodo exposita. Romae, Florentiae: Fratres Bocca.



Penchev, V. (2021 November 18) “What the Tortoise Said to Achilles: Lewis Carroll’s paradox in terms
of Hilbert arithmetic,” SSRN, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3944692 or
https://dx.doi.org/10.2139/ssrn.3944692 .
Penchev, V. (2021 August 24) “Hilbert arithmetic as a Pythagorean arithmetic: arithmetic as
transcendental,” SSRN, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3909610 or
https://dx.doi.org/10.2139/ssrn.3909610 .
Penchev, V. (2021 July 26) “Quantum phenomenology as a “rigorous science”: the triad of epoché and
the symmetries of information,” SSRN, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3892039 or
https://dx.doi.org/10.2139/ssrn.3892039 .
Penchev, V. (2021 July 8) “‘Two bits less’ after quantum-information conservation and their
interpretation as ‘distinguishability / indistinguishability’ and ‘classical / quantum’,” SSRN,
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3873123, https://dx.doi.org/10.2139/ssrn.3873123 .
Penchev, V. (2021 February 25) “Natural Cybernetics of Time, or about the Half of any Whole,” SSRN,
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3750608, https://dx.doi.org/10.2139/ssrn.3750608.
Penchev, V. (2020 December 14) “Natural Cybernetics and Mathematical History: The Principle of Least
Choice in History,” SSRN, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3714119 or
https://dx.doi.org/10.2139/ssrn.3714119 .
Penchev, V. (2020 August 31) “Two deductions: (1) from the totality to quantum information
conservation; (2) from the latter to dark matter and dark energy,” SSRN,
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3683658, https://dx.doi.org/10.2139/ssrn.3683658 .
Penchev, V. (2020 August 25) “The Relationship of Arithmetic As Two Twin Peano Arithmetic(s) and
Set Theory: A New Glance From the Theory of Information,” SSRN,
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3656179, https://dx.doi.org/10.2139/ssrn.3656179 .
Penchev, V. (2020 July 17) “From the Four-Color Theorem to a Generalizing 'Four-Letter Theorem':
A Sketch for 'Human Proof' and the Philosophical Interpretation,” SSRN,
https://dx.doi.org/10.2139/ssrn.3635195, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3635195 .
Penchev, V. (2020 June 29) “All Science As Rigorous Science: The Principle of Constructive
Mathematizability of Any Theory,” SSRN, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3618926
or https://dx.doi.org/10.2139/ssrn.3618926 .
Penchev, V. (2015) “God’s Dice,” in: ( S. Oms, J. Martínez, M. García-Carpintero & J. Díez, eds.), Actas:
VIII Conference of the Spanish Society for Logic, Methodology, and Philosophy of Sciences. Barcelona:
Universitat de Barcelona. pp. 297-303.
Penchev, V. (2012) “Negative and complex probability in quantum information,” Philosophical
alternatives 21 (1): 63-72; https://philpapers.org/rec/PENNAC-2 .
Penchev, V. (2010) “Insolubility of the first incompleteness theorem. Gödel and Hilbert mathematics,”
Philosophical Alternatives 19 (5): 104-119 (in Bulgarian, Пенчев, В. “Неразрешимост на първата
теорема за непълнотата. Гьоделова и Хилбертова математика,” Философски алтернативи);
https://philpapers.org/rec/PEN-21 ,
Peres, A. (1992) “An experimental test for Gleason's theorem,” Physics Letters A 163 (4): 243-245.
Qu, Hsueh (2014) “Hume's Positive Argument on Induction,” Noûs 48 (4): 595-625.
Richman, F., D. Bridges (1999) “A Constructive Proof of Gleason's Theorem,” Journal of Functional
Analysis 162 (2): 287-312.
Richman, F. (2000) “Gleason's Theorem Has a Constructive Proof,” Journal of Philosophical Logic 29
(4): 425-431.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3944692
https://dx.doi.org/10.2139/ssrn.3944692
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3909610
https://dx.doi.org/10.2139/ssrn.3909610
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3892039
https://dx.doi.org/10.2139/ssrn.3892039
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3873123
https://dx.doi.org/10.2139/ssrn.3873123
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3750608
https://dx.doi.org/10.2139/ssrn.3750608
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3714119
https://dx.doi.org/10.2139/ssrn.3714119
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3683658
https://dx.doi.org/10.2139/ssrn.3683658
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3656179
https://dx.doi.org/10.2139/ssrn.3656179
https://dx.doi.org/10.2139/ssrn.3635195
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3635195
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3618926
https://dx.doi.org/10.2139/ssrn.3618926
https://philpapers.org/rec/PENNAC-2
https://philpapers.org/rec/PEN-21


Rieder, S., K. Svozil (2007) “Probability Distributions and Gleason’s Theorem,” in: (G. Adenier, C. A.
Fuchs, A. Yu. Khrennikov, eds.) AIP Conference Proceedings Volume 889 (AIP Foundations of
probability and physics - 4 - Vaxjo (Sweden), 4-9 June 2006)]. Melville, NY: American Institute of
Physics, pp. 235-242.
Röd, W. (1983) “The Rationalist Theory of Double Causality as an Object of Hume's Criticism,”
Erkenntnis 19 (1-3): 315—329.
Rorty, R. (1982) “Keeping Philosophy Pure: an Essay on Wittgenstein,” in: R, Rorty. Consequences of
pragmatism. Minneapolis: University of Minnesota Press, pp. 19-36.
Rudolph, O., J. D. M. Wright (1998) “The Multi-form Generalised Gleason Theorem,” Communications
in Mathematical Physics 198 (3): 705-709.
Russell, B. (1902) “Letter to Frege (16.06.1902),” in: Gottlob Frege: Philosophical and mathematical
correspondence (ed. G. Gabriel). Chicago: University of Chicago Press, 1980, pp. 130-131.
Russell, B. (1903) Principles of mathematics. Cambridge: The University Press.
Sean, M. (2018) Quine, New Foundations, and the Philosophy of Set Theory. Cambridge: University
(Chapter 1 “Cantor and the Early Development of Set Theory”; Chapter 2 “Cantor, Russell, and Zermelo
and the Set-Theoretic Paradoxes”; Chapter 3 “New Foundations and the Beginnings of Quine’s
Philosophy of Set Theory).
Srivastava, S. M. (2014) “How did Cantor discover set theory and topology?” Resonance 19 (11):
977-999.
Steel, D. (2010) “What if the Principle of Induction is Normative? Formal Learning Theory and Hume’s
Problem,” International Studies in the Philosophy of Science 24 (2): 171-185.
Tarrach, R. (1997) “What When Gleason’s Theorem Fails?” (M. Ferrero, A. van der Merwe, eds.) New
Developments on Fundamental Problems in Quantum Physics (Chapter 51). Dordrecht: Springer
Netherlands, pp. 415-419.
Tiles, M. (2004) The Philosophy of Set Theory: An Historical Introduction to Cantor’s Paradise. Mineola:
Dover Publications.
Tucker, C. (2009) “Evidential Support, Reliability, and Hume's Problem of Induction,” Pacific
Philosophical Quarterly (Blackwell Publishing) 90 (4): 503-519.
Watkins, E. (2005) Kant and the metaphysics of causality. Cambridge: University Press,
Watkins, E. (2003) “Kant's Model of Causality: Causal Powers, Laws, and Kant's Reply to Hume,”
Journal of the History of Philosophy 42 (4): 449-488.
Weber, H. (1893) “Leopold Kronecker,” Mathematische Annalen 43 (1): 1-25.
Weintraub, R. (2008) “A Problem for Hume's Theory of Induction,” Hume Studies 34 (2): 169-187.
Weintraub, R. (1995) “What Was Hume's Contribution to the Problem of Induction?” The Philosophical
Quarterly 45 (181): 460-470.
Wittgenstein, L. (1921) “Logisch-Philosophische Abhandlung,” 14: 185-262. English translations:
(typesetting by K. C. Klement) Tractatus Logico-Philosophicus/Logisch-philosophische Abhandlung
(bilingual side-by-side edition, according to the English translations of both Ogden/Ramsey, and
Pears/McGuinness), 2018 (ver. 0.53), available at: http://people.umass.edu/klement/tlp/ .
Wright, V. J., S. Weigert (2019) “A Gleason-type theorem for qubits based on mixtures of projective
measurements,” Journal of Physics A Mathematical and Theoretical 52 (5): 055301(15).

http://people.umass.edu/klement/tlp/

