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Abstract. One of the most time-consuming kernels of an epileptic seizure detection app is
the computation of the Dynamic Time Warping (DTW) Distance Matrix. This kernel is a
good candidate for heterogeneous CPU/GPU/FPGA execution. In this paper, we explore
the design space of heterogeneous CPU, GPU, and FPGA implementations of this kernel.
We start by optimizing the CPU implementation of the DTW Distance Matrix computation
leveraging the latest C++26 SIMD library and compare it with the SYCL implementation for
CPU that also exploits the SIMD units. Next, we take advantage of the portability of SYCL
to run the code on an on-chip GPU, iGPU, as well as on a discrete NVIDIA GPU, dGPU.
Finally we also present the SYCL implementation of the kernel on an Intel Stratix 10 MX
FPGA. Our evaluations demonstrate that SYCL seems well suited to exploit the available
SIMD capabilities of modern CPU cores, and also shows promising results for the accelerating
devices considered in this work.

Keywords: Heterogeneous architecture · SIMD · GPU · FPGA · SYCL · DTW · energy
efficiency.

1 Introduction

Ten or twenty years ago, those who cared about performance had to embrace parallel programming
to squeeze the last drop of performance out of multicores. Nowadays, embracing heterogeneous
programming is also a must if we require performance and reduced energy consumption from cur-
rent computing platforms. These pervasive heterogeneous devices and platforms feature CPU cores,
GPUs, and FPGAs, among other accelerators and ASICs. In this context, the “No transistor left be-
hind” war cry conveys the idea of all devices helping in accelerating different parts of an application.
To help in this regard, new heterogeneous programming models, such as SYCL [7], DPC++, and
oneAPI [10], are emerging in order to ease the development of heterogeneous applications without
compromising performance.

In this paper, we target a CPU, an integrated GPU, iGPU, an NVIDIA discrete GPU, dGPU,
and an FPGA that we exploit to accelerate the most expensive function of an epileptic seizure
detection algorithm. In the process, we tailor the function for the CPU, the GPUs and the FPGA
devices, striving to reduce the energy consumption and paying attention also to the programmability.
For the CPU, one of the latest standard C++ SIMD library [11] and SYCL are used. For the GPUs
and FPGA, we also leverage the SYCL compiler (a High-Level Synthesis compiler in the case of
the FPGA).

Regarding the problem we tackle, epilepsy is one of the most common neurological diseases
globally [17] what makes the detection of epileptic seizures a socially impacting problem. Our goal
is to devise a wearable (glasses, headband, or headset) with just two electrodes that can take an
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electroencephalography (EEG) signal and warn the patient and their caregiver of epileptic seizures.
To that end, we have developed a seizure detection algorithm based on Dynamic Time Warping
(DTW) [15] distance matrix computation. This is a quite compute and data-intensive algorithm
that requires fast execution when trained with patient-specific EEG recordings.

With all this, this paper proposes the following novel contributions:

1. A CPU-optimized version of the DTW Distance Matrix computation that leverages the latest
C++26 SIMD library features and SYCL SIMDimization capabilities.

2. Two accelerator optimized versions of the DTW Distance Matrix computation, one for GPU
and another for FPGA, which take advantage of the latest oneAPI SYCL compiler and its
High-Level Synthesis capabilities for the FPGA.

3. A validation of the SYCL programming model in terms of performance portability and energy
efficiency in four different heterogeneous architectures, discussing the strengths and possible
limitations of our implementations for each device.

The remainder of the paper is organized as follows. The next section introduces the problem
as well as related work. The following two sections, Section 3 and 4, cover the CPU, GPU, and
FPGA implementations. Section 5 outlines the platform configuration and delves into a thorough
experimental evaluation that covers the performance and energy efficiency analysis of the different
implementations. Finally, we wrap up with conclusions in Section 6.

2 Background and related work

We rely on Figure 1 to illustrate key concepts that are required to understand the EEG analysis we
propose. A signal or channel, Sc, is defined as discrete-time sequence of real-valued numbers sci ∈ R,

SF3-C3

Sc

EEG channel with n samples and 2 seizures

Sc- Sc+ Sc- Sc+ Sc-

Zk1,z1
Zk2,z2

QF3-C3
c,d

Patterns
PF3-C3

i PF3-C3
i+1

SF3-C3
a,b

Epochs

s e

EF3-C3
i EF3-C3

i+1

QF3-C3

Query
Seizures

Fig. 1. The problem at hand and notation.

i.e., Sc = {sci ; 0 ≤ i < n}, where n is the length of the sequence and c is a channel id or label. Each
number sci represents the electrical potential between two electrodes sampled at a specific time ti.
Channel labels in the 10-20 system [2] are used to identify each channel. For example, in Figure 1,
each channel sample SF3−C3 represents the electrical potential measured between electrodes F3
and C3.

A seizure, denoted by Zc
k,z, is a subsequence in channel Sc that starts at the sample k and has

a length z, i.e. Zc
k,z = Sc

k,z when this subsequence has been labeled as a seizure. In the dataset
used, ictal (seizure) and interictal (non-seizure) episodes are clearly identified through metadata,
md, that specifies the onset and offset timestamps of each seizure, from which we gather the k and
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z values. The presence of seizures in Sc segments the signal into ictal, Sc+, and interictal, Sc−,
subsequences, as we see in Figure 1.

A query on channel Sc, Qc, is the concatenation of all N t
z seizures in Sct one after the other in

the order they appear. This can be expressed as: Qc = (Zc
k1,z1

, Zc
k2,z2

, ..., Zc
kNt

z
,zNt

z

). The total length

of the query is nq =
∑Nt

z
i=1 zi. For example, in Figure 1 we see that QF3−C3 is the concatenation of

the two seizures in the channel F3-C3.
In order to find seizure patterns in a channel Sc, we only consider subsequences with a fixed

length, e, and a fixed stride, s. We call epochs to these particular subsequences that, in other
words, virtually segment the channels into smaller equidistant and fixed-size sliding windows. More
precisely, an epoch Ec

i = Sc
k,e with k ∈ {i · s; 0 ≤ i < ne}, being the number of epochs ne =

⌊(n − e)/s⌋ + 1. Similarly to the epochs, the patterns are the subsequences or sliding windows of
size e and stride s that fill in a query Qc. This is, a pattern P c

i = Qc
k,e with k ∈ {i · s; 0 ≤ i < np},

being np = ⌊(nq − e)/s⌋ + 1 the number of patterns in the query of length nq. In Figure 1, we
depict just two generic epochs of the subsequence SF3−C3

a,b , labeled as EF3−C3
i and EF3−C3

i+1 and the
patterns PF3−C3

i and PF3−C3
i+1 of a query subsequence QF3−C3

c,d .
Let us remember that our goal is to automatically identify one or several patterns that can

discriminate between seizures and non-seizures in an EEG channel. Such a suitable pattern should
include a well-conserved shape that is present in seizure epochs, E+, but not in non-seizure ones,
E−. This can be achieved by comparing patterns and epochs by computing the distance between
them in order to measure their similarities. However, there are many patterns in the query, so we
need to compute a quality metric for all of them in order to find the best pattern (the one with
the highest discriminative quality). In any case, first we have to compute the distance matrix, DM ,
between all patterns, Pi, and all epochs, Ej , as shown in Figure 2. Formally, we use di,j = d(Pi, Ej)
for the DTW distances between the patterns and the epochs.
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Fig. 2. Distance Matrix, DM.

We define the distance, d(P c
i , E

c
j ), between a pattern, P c

i and an epoch, Ec
j , as the Dynamic

Time Warping (DTW) [15,14] distance between the two subsequences. DTW is an increasingly used
algorithm for measuring similarity between two temporal sequences that may vary in phase or speed.
It is now recognized as one of the most reliable similarity metrics [4]. Its higher computational cost in
comparison with cheaper distances (as the Euclidean Distance, ED), has spurred the development of
many simplified and optimized variants. One of the first simplifications was the cDTW (constrained
DTW) [14] that limits the warping path to a band, known as the Sakoe-Chiba band or warping
window, w, around the main diagonal of the cost matrix. When the warping window is set to 0, the
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cDTW degenerates into the ED. The cDTW is a good compromise between the ED and the DTW,
as it is faster than the DTW but more accurate than the ED. In this work we use cDTW with
warping window, w = 16, as the distance metric between patterns and epochs. When the cDTW
is used to find the nearest neighbor, NN, for example to find the most similar epoch to a pattern,
further optimizations have been proposed, such as lower-bounding, early abandoning, and pruning
techniques [8].

In principle, the number of DTW distances that we have to compute is equal to the number
of patterns times the number of epochs, which can be prohibitive. For example, by looking at the
first patient of the CHB-MIT dataset [6] we see that for each of the 23 channels of this patient,
with e = 1024 (4 seconds) and s = 256 (1 second), there are more than 145K epochs and 269
patterns, which results in almost 40 million DTW distances that must be computed. Running a
widely available Python DTW library1 [5] on an off-the-shelf laptop, a single DTW distance of two
subsequences of 1024 samples can take tens of milliseconds, which would translate in several months
to compute all the distances of a single channel of a single patient.

Our work strives to optimize the computation of the DTW distance matrix, DM , and validate its
performance and efficiency on four different architectures: CPU, iGPU, dGPU, and FPGA. We are
not aware of any previous work that has tackled this problem in such a comprehensive way. However,
we can find related work in the literature that has addressed the problem of computing another kind
of distance matrix in different ways. For instance, in [18], the authors propose a parallel algorithm,
STAMP, to compute the Matrix Profile, based on a distance matrix that is used to find similar
subsequences in time series. SCRIMP [19] supersedes STAMP computing, in parallel, the diagonals
of the distance matrix. SCAMP [20] leverages the Pearson correlation to compare subsequences,
instead of using the ED. We contributed with a CPU+GPU implementation of SCRIMP and a
CPU+FPGA implementation of SCAMP in [12] and [13], respectively. In [3] the DTW is used to
compute the matrix profile instead of the ED, but the distance matrix is not explicitly computed.
However, in our work, we need the whole DTW distance matrix because it is consulted many times
in order to compute the quality metrics that help us to identify the most discriminative epilepsy
seizure pattern.

3 CPU and GPU implementations

In Figure 3 we show an example of the cDTW distance computation. In the top-left corner we see the
Euclidean Distance between a hypothetical Epoch, E, and Pattern, P , both of size e = 6. Each point
of the Pattern is paired with the corresponding one in the Epoch so that the Euclidean Distance is
dE =

∑e−1
i=0 (Pi −Ei)

2. However, below we see that using a warping window of w = 2, the points of
P , Pi, can be paired with points of E, Ej , with j ∈ {i−2, i−1, i, i+1, i+2}. In this case, the cDTW
distance is dDTW =

∑e−1
i=0 (Pi − Ej)

2, where j is the index of the point in E, within the warping
window, that minimizes the distance. In this example, dDTW = 4+0+1+1+1+0+1+1 = 9, and
the warping path, highlighted in gray, identifies the pairs (i, j) that result in this DTW distance.

The cDTW algorithm takes two vectors of data points, P and E, and computes the distance
between them. The distance is computed by traversing a virtual (not stored) DTW matrix, D, of
e×e from the top left corner to the bottom right one. The distance between Pi and Ej is computed
as the Euclidean distance between them, d(Pi, Ej) = (Pi − Ej)

2, plus the minimum of the three
adjacent cells in the distance matrix, N , NW , and W in Figure 3 (from North, North West, and

1 See https://dynamictimewarping.github.io/

https://dynamictimewarping.github.io/
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Fig. 3. Euclidean distance, cDTW distance example, and SIMD data structures.

West). The final distance is the value of the bottom right corner of the matrix. The elements of the
matrix out of the diagonal ±w are initialized to ∞.

As we see on the left side of Figure 3, we can save memory space by only storing the required
information of the matrix in two vectors of size 2 ·w+1, (5 elements in our example). These vectors,
PRE (from previous) and CUR (from current) store just the elements that are necessary to compute
the band of the matrix. At each i iteration, PRE and CUR are swapped and CUR is filled with
the new values. For example, in our example of Figure 3, at iteration i = 4, PRE={6,9,18,13,13}
(from iteration 3) and for j = 4 we have NW = 18, N = 13, W = 7, and d(P4, E4) = 1, so
x4,4 = min(18, 13, 7) + 1 = 8.

The computation of the distance matrix, DM, offers several sources of parallelism that we can
exploit. For instance, on the CPU, the simplest parallel version uses OpenMP to parallelize the
epoch dimension (the largest one) of the DM. This is our baseline so we call it BASE. Besides, the
pattern dimension is also parallelizable, and in order to better exploit the cache hierarchy we can
“SIMDimize” the traversal in this dimension by comparing several patterns with each epoch.

Listing 1. Definition of dtw_t for different CPU implementations (BASE, SIMD, SYCLCPU)
1 namespace stdx = std::experimental;
2 using data_t = float
3 #ifdef __SIMD__ || __SYCLCPU__
4 #ifdef __SIMD__
5 using dtw_t = stdx::native_simd<data_t>;
6 #elif __SYCLCPU__
7 using dtw_t = sycl::float16;
8 #endif
9 constexpr size_t SIMDw = dtw_t::size();

10 #endif
11 #ifdef __BASE__
12 using dtw_t = data_t;
13 #endif

To that end, that substantially speed up the computation, we have explored two alternatives:
i) the C++26 SIMD library2 [11] (we call this version SIMD); or ii) the SIMD features of SYCL
(we call this version SYCLCPU). In Listing 1 we show how the dtw_t is defined depending on the
chosen alternative (BASE, SIMD, SYCLCPU). Basically, since data_t=float, dtw_t is a float
in BASE (line 12), a native_simd<data_t> in SIMD (line 5) and a float16 in SYCLCPU
(line 7). In line 9, we initialize the constant SIMDw with the SIMD width (lanes) that, for our
data_t=float, can be set to 4, 8 and 16 floats per SIMD register on our platforms.

2 Or std::experimental::simd until C++26 is released
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With this, in Listing 2, we list the DTW_CPU class that computes the DTW either in the BASE,
SIMD, and SYCLCPU versions, thanks to conditional compiling and the parametrization on dtw_t.
On the far right of Figure 3 we see the SIMD data structures, mainly registers PRE and CUR and
variables NW, N and W.

Listing 2. DTW implementation on CPU (BASE, SIMD, SYCLCPU)
1 constexpr dtw_t maxval{std::numeric_limits<data_t>::max()}; // Infinite for out-of-band values
2
3 class DTW_CPU {
4 public:
5 DTW_CPU(const data_t *E, const data_t *P, size_t e, int w, dtw_t *CUR, dtw_t *PRE)
6 : E{E}, P{P}, e{e}, w{w}, CUR{CUR}, PRE{PRE} {}
7
8 dtw_t calculate_dtw() {
9 for (int i=0; i<2*w+1; i++) CUR[i] = PRE[i] = maxval; // Init band registers

10 int k = 0;
11 for (int i = 0; i < e; i++) { // Traverses the rows of DTW matrix D
12 k = max(0, w - i);
13 for (int j = max(0, i - w); j <= min(e - 1, i + w); j++, k++) // Traverses the band
14 CUR[k] = this->operator()(i, j, k); // compute x_ij
15
16 std::swap(CUR, PRE); // swap current row with previous one
17 }
18 return PRE[k-1]; // return the final distance value
19 }
20
21 private:
22 dtw_t operator()(int i, int j, int k) {
23 dtw_t N, W, NW;
24 #ifdef __SIMD__
25 dtw_t Psimd{&P[j * SIMDw], stdx::element_aligned}; // Load pattern vector
26 dtw_t d = dist(E[i], Psimd); // Compute the distance epoch-pattern (SIMD op.)
27 #elif __SYCLCPU__
28 dtw_t Psimd; // Load pattern vector
29 Psimd.load(0, sycl::multi_ptr<const dtw_t,
30 sycl::access::address_space::global_space>(&P[j * SIMDw]));
31 dtw_t d = dist(E[i], Psimd); // Compute the distance epoch-pattern (SIMD op.)
32 #elif __BASE__
33 dtw_t d = dist(E[i], P[j]); // Compute the distance epoch-pattern (scalar op.)
34 #endif
35
36 if ((i == 0) && (j == 0)) return d;
37 if ((j<=0)||(k<=0)) W = maxval; // out of E or CUR bounds
38 else W = CUR[k-1];
39 if ((i<=0)||(k>=2*w)) N = maxval; // out of P or PRE bounds
40 else N = PRE[k+1];
41 if ((i<=0)||(j<=0)) NW = maxval; // out of P or E bounds
42 else NW = PRE[k];
43
44 #ifdef __SIMD__
45 //where(N<W, W) = N; where(W<NW, NW) = W; //inefficient alternative, up to 3.62x slower
46 NW = stdx::min(stdx::min(N, W), NW); // min of N, W and NW
47 return NW + d;
48 #elif __SYCLCPU__
49 return sycl::fmin<dtw_t>(sycl::fmin<dtw_t>(N, W), NW) + d; // min of N, W and NW
50 #elif __BASE__
51 return min(min(N, W), NW) + d; // min of N, W and NW
52 #endif
53 }
54 // Private data members:
55 const data_t *E, *P; // E points to an epoch, P to several patterns in SIMD and SYCLCPU
56 size_t e; // number of samples of the epoch and pattern
57 int w; // DTW warping window (16 in our experiments)
58 dtw_t *CUR, *PRE; // band registers, of SIMD type in SIMD and SYCLCPU
59 };
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The constructor DTW_CPU in line 5 initializes the input arrays with an epoch, E, and several
patterns, P, but for the latest, the entries have been previously (in the caller) rearranged so that
consecutive values correspond to different patterns. The member function calculate_dtw (line 8
in Listing 2) traverses the rows (i loop) of the DTW matrix D and the band registers (zipped j-k
loop), calling at each iteration to the operator() function (line 22). Inside that function, for the
SIMD and SYCLCPU versions a Psimd vector is loaded with SIMDw values of the corresponding
pattern sample, Pi, (see Figure 3) to later compute SIMDw distances in parallel on the SIMD units.
For the BASE version (line 33) a single distance is computed per iteration. In lines 36-42, W, N and
NW variables (of SIMD type in the corresponding case) are initialized so that we can compute the
xij distance (lines 44-52) of Figure 3 and store it in CUR[k] (line 14), to finally swap the current
and previous band registers (line 16).

A performance issue was identified in the where SIMD function of the SIMD C++ library. By
replacing where by stdx::min (see lines 45 and 46), a significant performance improvement was
observed (up to 3.62x on our evaluation platforms).

In the BASE and SIMD versions, the function calculate_dtw() is called from a double
nested loop that traverses both the epochs and the patterns, using OpenMP parallel_for in
the outer loop that traverses the epochs. In SYCLCPU, a data-parallel kernel approach is used so
that the same function is called inside a kernel submitted to the CPU SYCL queue (that also feeds
the 8 CPU cores of our platforms).

For the GPU implementation, SYCLGPU, taking advantage of the portability of SYCL, we took
the BASE code shown before, and compiled it for the iGPU and for the NVIDIA dGPU. For the
latest, we leverage the interoperability features of the Intel oneAPI DPC++/C++ Compiler, by
adding the required compiler flags (as -fsycl-targets and -Xsycl-target-backend). As in
the SYCLCPU version, the SYCLGPU one invokes the function calculate_dtw() from a kernel
which is now submitted to the corresponding GPU queue (the iGPU or the dGPU). In Section 5
we describe the methodology employed to identify the optimal global work and work-group sizes
for each device.

4 FPGA implementation

The FPGA implementation deserves its own section because although it is also written in SYCL
and compiled with the oneAPI SYCL compiler (and its HLS features), the code used for the CPU
and GPU has to be substantially rewritten to get the most out of the FPGA. Still, the SYCL
language allows us fast prototyping and design space exploration.

The core of the proposed architecture is based on the basic DTW accelerator circuit presented
in [9]. This circuit combines a very simple iterative scheme, pipelining, and computation interleaving
to produce a very efficient circuit in terms of throughput using a very reduced area. It has been
adapted to the Intel FPGA architecture to create our IP kernel that we sketch in Figure 4. This
kernel is replicated as much as possible (24 times) to maximize the FPGA utilization. Each kernel
comprises several “DTW Computation” modules, along with one “Epoch Generation”, one “Pattern
Generation”, and one “Result Write-back” module. The computation modules work in parallel with
different epochs, but the same pattern. Hence, the different epochs are sent in parallel to the
computation modules whereas the patterns are sent serially from one computation module to the
next. There are as many computation modules in a basic kernel as strides fit in an epoch (four in
our case, with e = 1024 and s = 256).
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Fig. 4. Basic kernel for DTW computation and kernel replication on the FPGA.

All of these modules have been designed with the idea of reducing as much as possible the access
to the external memory by generating all the computations associated with specific data. When
this is not possible, an internal cache memory system has been used to keep the read data on the
FPGA while it is still useful.

The different modules communicate with each other with queues (FIFOs) defined using oneAPI
libraries. The synchronization of the whole system is data-driven based. That means that each
module controls how much data needs to be read or produced and the queues control signals stall
the modules whenever is required.

5 Experimental results

The major goal of SYCL is to improve the programmer productivity by allowing different hetero-
geneous devices to be used in a single application. However, although optimizations in the kernel
code may differ across the devices in order to exploit their specific capabilities as we have seen in
the previous sections, it is yet to be proven that this programming model guarantees performance
portability across devices. This is the relevant point that we want to quantify here for our case
of study. For this, in this section, we conduct a performance evaluation of the various kernel im-
plementations previously discussed. Our metrics of interest are the throughput (measured as the
number of DTWs per millisecond -DTW/ms-) and the energy efficiency (measured as the through-
put per Joule -DTW/ms per Joule-). We also explore whether, despite the optimizations, hardware
bottlenecks appear in our executions.

5.1 Testbed

The experimental evaluation has been performed on two test benches: AlderLake and SkyLake. All
results (time and energy) are reported as the average value of 5 runs. We use 8 cores/threads in all
CPU runs.

AlderLake features an Intel Core i9-12900K CPU, running at 3.20 GHz, with 8 performance,
P, cores and 8 efficiency, E, cores, and 30 MB L3. For our study, we use the taskset command to
confine the threads only on the P-cores. This platform also includes the on-chip/integrated GPU,
iGPU, Intel UHD Graphics 770 and the discrete GPU, dGPU, NVIDIA RTX 4070 Ti. It has 128
GB of RAM and runs on Ubuntu 22.04.5 LTS. We compile with the Intel oneAPI DPC++/C++
icpx compiler version 2024.0.2.

SkyLake has an Intel Core i7-7820X 3.60 GHz processor with 8 cores and 11 MB L3, plus 128
GB of DDR4 RAM. In addition, it has an FPGA Intel Stratix 10 MX with 32 HBM memory banks,
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each with 512 MB, totaling 16 GB. The system runs CentOS 8.1.1911. This unit lacks a graphics
card, thus enabling the execution of all developed versions, with the exception of the GPU version,
including the FPGA implementation. On this platform, the baseline and SIMD versions based on
C++26 utilize the GCC 12.2.0 compiler, whereas the SYCLCPU and FPGA versions are compiled
with the Intel oneAPI DPC++/C++ Compiler 2022.0.0 (this is the latest version supported by our
FPGA).

To evaluate energy consumption on both platforms, we use Intel Performance Counter Monitor
(Intel PCM)3 to accurately measure CPU and GPU power usage. In addition, to monitor FPGA
power usage, we utilize StratixMonitorLib [16]. We rely on the NVIDIA Management Library
(NVML) [1], a specialized API created by NVIDIA to measure numerous metrics of its graphics
cards, including the ability to monitor power usage.

As a benchmark, we use a channel, Sc, with 162 hours of EEG signal sampled at 256 samples
per second which translates into n = 150 ∗ 106 samples. The query, Qc, that contains the epileptic
seizures has nq = 107, 263 samples. Using epochs and patterns of length e = 1024 and stride
s = 256, we end up with a number of epochs, ne = 589, 823 and a number of patterns, np = 415,
which results in a Distance Matrix with more than 244 million of DTW distances.
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Fig. 5. Performance metrics on AlderLake and SkyLake: Throughput -DTW/ms-. The higher, the better.

5.2 Performance evaluation

Figure 5 depicts the throughput (DTW/ms) that our different implementations achieve on Alder-
Lake and SkyLake. BASE represents a parallel OpenMP CPU implementation without the SIMD
optimization that we take as the baseline. SIMD represents a CPU implementation based on the
C++26 SIMD library, whereas SYCLCPU shows the results for a CPU implementation based on
SYCL (see section 3). In both cases, SIMDw=x states the number of SIMD lanes that have been
configured in each evaluation: 4, 8, and 16 floats per SIMD register.

3 See https://github.com/intel/pcm/

https://github.com/intel/pcm/
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Additionally, in AlderLake we see the results for the SYCLGPU implementation (see section 3)
running on the integrated GPU (iGPU) and on the discrete GPU (dGPU). To tune these versions, we
use the Intel GPU Occupancy Calculator tool and the CUDA occupancy calculator that help us to
explore different iGPU/dGPU job size configurations. We found that the optimal configuration for
the iGPU was a global work size of 4096x32 and a work-group size of 64x8, achieving ideally 96.2% of
execution unit (EU) utilization. Also, after exploring different combinations for the dGPU, we found
that a global size of 12288x128 and a block size of 256x1, maximize ideally the multiprocessors (SM)
utilization, achieving 97.66% of occupancy in this case. The results shown in the figure correspond
to these configurations.

On the other hand, in SkyLake we see the results for the SYCL FPGA implementation (see
section 4) running on the Stratix 10 MX. Ideally, our implementation is able to compute 24 DTWs
per cycle.

Clearly, from Figure 5 we see that the SIMDimized CPU implementations always outperform
the baseline and that increasing the number of lanes improves performance in both platforms,
as expected. Moreover, SIMD code based on the C++26 library performs slightly better than the
SYCL version. The observed performance degradation in SYCL is due to the kernel enqueueing and
launching, which represent up to 5% and 3% of overhead in AlderLake and SkyLake, respectively. In
any case, the optimal SIMDw=16 version outperforms the baseline by 11.8x and 11.4x in AlderLake
and SkyLake. In fact, we performed a roofline analysis using the Intel Advisor tool and found that
the function that represents the hotspot in the optimal SIMDw=16 code is compute-bound, and
it features a headroom of just 1.4x and 2.4x to the ideal ALU peak in AlderLake and SkyLake
respectively. In other words, there are no bottlenecks, and the SIMDimization is fully exploiting
the CPU capabilities in our CPU implementations (SIMD library-based and SYCL).

In AlderLake we see that the SYCLGPU version running on the integrated GPU (iGPU) per-
forms 2.5x faster than the baseline. The Intel Advisor tool reports a 75% of EU occupancy, which
hints that SYCL is reasonably exploiting the iGPU capabilities. Moreover, this SYCLGPU im-
plementation running on the discrete GPU (dGPU) achieves 5.1x improvement over the fastest
SYCLCPU. We also carried out a roofline analysis of this version using the NVIDIA NSight Com-
pute tool and found that the function that represents the hotspot is memory bound, achieving 81%
and 43% of memory and SM occupancy, respectively. Thus, although far from the expected ideal SM
occupancy, this version fully exploits the attainable dGPU memory bandwidth, which represents
the bottleneck in this device.

In SkyLake we notice that the SYCL version running on the FPGA is 4.3x faster than the
baseline, but still 2.5x slower than the best SYCLCPU version. From the Intel oneAPI FPGA
Reports tool we discovered that the loop that represents the hostspot has an initiation interval of
1, it is pipelined and works at a frequency of 300 MHz. This loop is in fact the DTW computation
module shown in Fig. 4, and from the tool we learn that although it is fully optimized, the FIFO-
queues used to send one computed pattern from one computation module to the next are effectively
the bottleneck of the implementation because they introduce several stalls. Other interesting result
is that the area estimates report tell us that our kernel uses 38% of ALUTs, 35% of on-chip block
RAM and 7% of DSPs. Despite the apparent availability of resources, the compiler fitter module
(quartus_fit) was able to perform the placement and routing only under this scenario.

5.3 Energy efficiency evaluation

The energy consumption metrics for AlderLake and SkyLake are shown in Figure 6. The solid bars
show energy consumption in Joules (the higher the value, the worse), while the patterned bars
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show the energy efficiency -DTW/ms per Joule - in log scale (the higher the value, the better the
efficiency).
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Fig. 6. Energy consumption metrics in AlderLake and SkyLake: Energy -Joules- and Energy Efficiency
-DTW/ms per Joule-. The latter metric is in log scale, and the higher, the better efficiency.

From the energy consumption point of view, the SYCLGPU implementation running on the
iGPU and dGPU reports the smallest values on Alderlake. However, from the energy efficiency
perspective, the two more efficient implementations are SYCLGPU on dGPU and SIMD with
SIMDw=16 on the CPU. On Skylake, the SYCLFPGA implementation exhibits the lowest en-
ergy consumption and its energy efficiency is near the more efficient SIMD and SYCLCPU with
SIMDw=16 on the CPU.

6 Conclusions

In this paper, we propose a novel DTW distance matrix algorithm that we tailor to four different
architectures: CPU, iGPU, dGPU, and FPGA. We use SYCL as the heterogeneous programming
paradigm and evaluate its performance portability and energy efficiency across devices. Our results
demonstrate that SYCL seems well suited to exploit the available SIMD capabilities of modern
CPU cores, both in terms of performance and energy efficiency. It also shows promising results for
accelerating devices, such as integrated and discrete GPUs and FPGAs, although in these two latter
devices the off-chip and on-chip memory bandwidth are the bottlenecks, respectively.

These results make the case for using SYCL to systematically define the kernel of our application,
then apply device-specific optimizations, as illustrated in this work, and finally dispatch each variant
to the corresponding device. In fact, our results tell us that heterogeneous executions in which CPUs,
GPUs, and FPGAs collaborate simultaneously to accelerate our application make sense, and we will
explore this issue in future work. For it, we will implement a heterogeneous scheduler that will take
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care of the data distribution and load balancing among devices in order to optimize throughput
and/or energy consumption.
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