
EasyChair Preprint
№ 2005

Efficient Structure Learning with Automatic
Sparsity Selection for Causal Graph Processes

Théophile Griveau-Billion and Ben Calderhead

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 19, 2019

Efficient structure learning with automatic sparsity
selection for causal graph processes

Théophile Griveau-Billion
Department of Statistics
Imperial College London

180 Queen’s Gate, Kensington, London SW7 2AZ, UK
theophile.griveau-billion14@imperial.ac.uk

Ben Calderhead
Department of Statistics
Imperial College London

180 Queen’s Gate, Kensington, London SW7 2AZ, UK
b.calderhead@imperial.ac.uk

Abstract

We propose a novel algorithm for efficiently computing a sparse directed adjacency
matrix from a group of time series following a causal graph process. Our solution
is scalable for both dense and sparse graphs and automatically selects the LASSO
coefficient to obtain an appropriate number of edges in the adjacency matrix.
Current state-of-the-art approaches rely on sparse-matrix-computation libraries to
scale, and either avoid automatic selection of the LASSO penalty coefficient or rely
on the prediction mean squared error, which is not directly related to the correct
number of edges. Instead, we propose a cyclical coordinate descent algorithm that
employs two new non-parametric error metrics to automatically select the LASSO
coefficient. We demonstrate state-of-the-art performance of our algorithm on
simulated stochastic block models and a real dataset of stocks from the S&P500.

1 Introduction

Graph structures can be represented with an adjacency matrix containing the edge weights between
different nodes. Since the adjacency matrix is usually sparse, common estimation techniques involve
a quadratic optimization with a LASSO penalty to impose this sparsity. While the coefficient of the
L1 regularization term is easy to choose when we have prior knowledge of the appropriate sparsity
level, in most cases we do not and the parametrization becomes non-trivial. In this paper we focus on
causal relationships between time series, following the causal graph process (CGP) approach (Mei
and Moura, 2015, 2017) which assumes an autoregressive model, where the coefficients of each time
lag is a polynomial function of the adjacency matrix. Using the adjacency matrix instead of the graph
Laplacian allows this set-up to consider directed graphs with positive and negative edge weights.
Mei and Moura (2017) simplify the problem to a combination of quadratic minimisations with L1

regularization terms which they then solve with a sparse gradient projection algorithm. They choose
this algorithm for its use of sparse-matrix-computation libraries, which is efficient only for highly
sparse graphs; its performance deteriorates significantly with more dense graphs.

The cyclical coordinate descent algorithm is a widely used optimisation method due to its speed.
Its popularity increased after Tseng (2001) proved its convergence for functions that decompose
into a convex part and a non-differentiable but separable term, which makes it perfectly suited for

CausalML Workshop at 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver,
Canada.

solving quadratic minimizations involving an L1 regularization term. In Wu and Lange (2008) the
efficiency of both a cyclical and a greedy coordinate descent algorithm to solve the LASSO was
shown. Subsequently, Wang (2013) demonstrated that the cyclical version is more stable and applied
it to solve the graphical LASSO problem. Meinshausen and Bühlmann (2006) extended the LASSO
to high-dimensional graphs by performing individual LASSO regularization on each node. This
approach inspired Friedman et al. (2008) to create the graphical-LASSO with the block coordinate
descent algorithm. This algorithm computes a sparse estimate of the precision matrix assuming that
the data follows a multivariate Normal distribution. The use of CCD to solve this graph-LASSO
problem allows for efficiently computing the sparse precision matrix in large environments. However,
this algorithm focuses on simultaneous connections not causal relationships. In contrast, Shojaie and
Michailidis (2010a,b) proposed different approaches to compute what they define as a graph-Granger
causality effect, however their models assumed prior knowledge of the structure of the underlying
adjacency matrix and therefore focused on estimating the weights.

In the literature there are many proposed methods for selecting the LASSO coefficient. Banerjee
et al. (2007); Meinshausen and Bühlmann (2006); Shojaie and Michailidis (2010a,b) use a function
of the probability of error, which depends on selection of a probability. Wu and Lange (2008); Mei
and Moura (2015, 2017) perform an expensive grid search and use the in- and out-of-sample error to
select the coefficient. Friedman et al. (2008); Wang (2013) avoid the problem by simply fixing the
coefficient to a selected value. These strategies either require the selection of free parameters or rely
on the prediction error to find the correct LASSO coefficient.

In this work we follow the idea of the graph-LASSO of Friedman et al. (2008) and the individual
LASSO regularization of Meinshausen and Bühlmann (2006) to propose a new CCD algorithm
that solves the causal graph process problem of Mei and Moura (2015, 2017). The CCD approach
allows us to leverage the knowledge of the specific structure of the adjacency matrix to optimise the
computational steps. In addition, we propose a new metric that uses the prediction quality of each
node separately to select the LASSO coefficient. Our solution does not require additional parameters
and produces better results than relying solely on the prediction error. Thus, our algorithm computes
the directed adjacency matrix with an appropriate number of edges, as well as the polynomial
coefficients of the CGP. Furthermore, the quality of the results and speed are not affected by the
sparsity level of the underlying problem. Indeed, while the algorithm proposed by Mei and Moura
(2015, 2017) scales cubically with the number of nodes, the algorithm we propose scales quadratically
while automatically selecting the LASSO coefficient.

We show the performance of our solution on simulated CGPs following a stochastic block model with
different sizes, levels of sparsity and history lengths. We assess the quality of the estimated adjacency
matrix by considering the difference in number of edges, the percentage of correct positives and
the percentage of false positives. We highlight the performance of our approach and its limits. We
then run the algorithm on a financial dataset and interpret the results. Section 2 introduces signal
processing on graphs. We then introduce our novel algorithm based on a coordinate descent algorithm
to efficiently estimate the adjacency matrix of the causal graph process in Section 3. In Section 4 we
present a new non-parametric metric to automatically select the LASSO sparsity coefficient. Finally,
in Section 5 we present the results on simulated and real datasets.

2 Background to signal processing on graphs

There exist many approaches for modelling a graph; in this paper we use a directed adjacency matrix
A. An element Ai,j ∈ R of the adjacency matrix corresponds to the weight of the edge from node j
to node i. We consider a time dependent graph with N nodes evolving over K time samples. Let
x(k) ∈ RN be the vector with the value of each node at time k. With this formulation, the graph
signal over K time samples is denoted by the matrix X(K) = [x(0) . . . x(K − 1)] ∈ RN×K . We
assume the graphs to follow a causal process as defined in Mei and Moura (2015, 2017). The causal
graph process (CGP) assumes the graph at time k to follow an autoregressive process over M time
lags. The current state of the graph, x(k), is related to the lag l through a graph filter Pl(A). The
graph filter is considered to be a polynomial function over the adjacency matrix with coefficients
C = {cl,j} defined by: Pl(A) =

∑l
j=0 cl,jA

j . Without loss of generality we can fix the coefficients
of the first time lag to be (c1,0, c1,1) = (0, 1). Thus, the CGP at k can be expressed as:

x(k) = w(k) +Ax(k − 1) + · · ·+
(
cM,0I + · · ·+ cM,MA

M
)
x(k −M) . (1)

2

Where w(k) corresponds to Gaussian noise. Hence, the problem of reconstructing the CGP from a
group of time series consists of estimating the adjacency matrix A and the polynomial coefficients C.
Mei and Moura (2015, 2017) consider the optimisation problem:

(A, c) = min
A,c

1

2

K−1∑
k=M

∥∥∥∥∥x(k)−
M∑
l=1

Pl(A)x(k − l)

∥∥∥∥∥
2

2

+ λ1‖A‖1 + λc1‖C‖1 , (2)

where they include a LASSO penalty for both the adjacency matrix and the polynomial coefficients to
enforce sparsity. They decompose this optimisation into different steps: first estimate the coefficients
Ri = Pi(A), then from those coefficients retrieve the adjacency matrix A, which allows the polyno-
mial coefficients C to be obtained via another minimisation. Due to the L1 penalty, the optimisation
problem is not convex for R1 and C.

For the first step, they perform a block coordinate descent over the matrix coefficients Ri. Each step
of the descent is quadratic except for R1 which has the L1 regularisation term. From the obtained
matrix coefficients Ri they perform an additional step in the block descent to obtain the adjacency
matrix A. With the estimated adjacency matrix, we can reformulate the minimisation of Equation
2 in a function of the vector C with an L1 regularisation term. In their paper, they do not go into
details on how they perform these minimisations and just specify that they use a sparse gradient
projection algorithm. The authors argue in favour of this algorithm because it is particularly efficient,
however only in the case of highly sparse problems; otherwise, for a dense graph this algorithm will
scale as the cube of the number of nodes which renders it impractical. This motivates our interest in
developing a novel cyclical coordinate descent (CCD) algorithm for this problem.

3 Estimating the adjacency matrix with coordinate descent

The sparse gradient projection (SGP) algorithm Mei and Moura (2015, 2017) used to solve each step
of the block coordinate descent algorithm does not take full advantage of the structure of the problem.
We therefore propose an efficient CCD algorithm for estimating the adjacency matrix and the CGP
coefficients, and since the L1 regularisation constraint in the optimisation problem for the matrix
coefficients only applies to R1, we consider the two cases i = 1 and i > 1 separately. The detailed
steps leading to the equations presented in this section are in Appendix 7.1.

3.1 Update equation for i > 1

In the case of i > 1, the minimisation of Equation 2 on the matrix coefficient Ri simplifies to
a quadratic problem, which is well suited for a CCD algorithm looping over the different lags i.
Furthermore, since the minimisation is over a matrix, CCD allows us to avoid computing a gradient
over a matrix; instead we compute the update equation for matrix Ri directly. We reformulate the
loss function to isolate Ri with Si

k = x(k)−
∑M

l 6=iRlx(k − l), thus the utility function is:

L(Ri) =
1

2

K−1∑
k=M

(
Si
k −Rix(k − i)

)T (
Si
k −Rix(k − i)

)
, (3)

where Si
k, xk are vectors of size N . The derivative of L(Ri) with respect to Ri is equal to zero if:

Ri =

(
K−1∑
k=M

Si
kx(k − i)T

)(
K−1∑
k=M

x(k − i)x(k − i)T
)−1

. (4)

which gives us an update equation for CCD. Since the matrix
∑K−1

k=M x(k − i)x(k − i)T in equation
4 is not guaranteed to be non-singular, we can perform a regularisation step by adding noise to its
diagonal to compute the inverse. While this inverse step is expensive it does not depend on the
matrices Ri. Thus, it can be computed in advance outside of the CCD loop. Hence, the update
consists of a vector-vector multiplication followed by a matrix-matrix multiplication of size N ×N .

3.2 CCD for i = 1

For i = 1, the optimisation corresponds to Equation 2 with the L1 regularisation term. We can
follow the methodology of the previous section and derive a matrix update to compute the CCD step.

3

However, in practice this solution produces matrices that are too dense. Hence, we instead constrain
the sparsity on each node. This corresponds to running a CCD over the columns of the matrix R1.
Indeed, a column j of the adjacency matrix corresponds to the weight of the edges going from node
j to the nodes it influences. To do so, we have to reformulate the loss function as a problem over
the column j of R1. Let us denote by R−j1 the matrix R1 without the column j, Rj

1 the column j
of the matrix R1, x−j(k − 1) the vector x(k − 1) without the term at index j, and xj(k − 1) the
value of the j-th term of x(k − 1). Thus, we can reformulate the error term to isolate the column j:
x(k)−

∑M
i=1Rix(k− i) = S1

k −R
−j
1 x−j(k− 1)−Rj

1x
j(k− 1). Therefore, the Lagrangian of the

minimisation over the column j of R1 with a LASSO regularisation term follows as:

L(Rj
1) =

1

2

K−1∑
k=M

∥∥∥S1
k −R

−j
1 x−j(k − 1)−Rj

1x
j(k − 1)

∥∥∥2
2

+ λ1|Rj
1| . (5)

Due to the non-differentiable L1 term we need to use sub-gradients and thus introduce the soft-
thresholding function to obtain the CCD updating equation. We define the soft-threshold function
as S(a, b) = sign(a)(|a| − b)+, where sign(a) is the sign of a and (y)+ = max(0, y). Then, the
derivative of the Lagrangian 5 is zero if:

Rj
1 =

S
(∑K−1

k=M

(
S1
k −R

−j
1 x−j(k − 1)

)
xj(k − 1), λ1

)
∑K−1

k=M (xj(k − 1))2
. (6)

The CCD algorithm for R1 will loop by updating each column using Equation 6. As for the update of
Ri, the denominator of Equation 6 can be computed outside the loop. Thus the complete algorithm
consists of a CCD for each lag i with an inner CCD loop over the columns of R1. Algorithm 1 shows
the complete CCD algorithm to compute the matrix coefficients Ri of the CGP process. We stop the
descent when the first of four criterion is reached: the maximum number of iterations is reached,
the L1 norm of the difference between the matrix coefficients R and its previous value is below a
threshold ε, the L1 norm of the difference between the new and previous in-sample MSE is below ε
or the in-sample MSE increases. We then obtain the adjacency matrix by running an extra step of the
columns CCD on R1.

Algorithm 1 CCD algorithm to compute the matrix coefficients R

1: procedure COMPUTE-R(x,M,N,K)
2: Compute the denominators of Equations 6 and 4 outside the loop
3: R = [zeros(N,N) , ∀i ∈ [1,M]] . Initialise coefficients at zero
4: while Convergence criterion not met do
5: Run CCD over the columns of R1 with Equation 6
6: Run CCD for each lag i > 1 with matrix update Equation 4
7: end while
8: Run the CCD over the columns of R1 to obtain the adjacency matrix A
9: end procedure

3.3 Retrieving the polynomial coefficients c

Once we have retrieved the adjacency matrix A, the next step of the block coordinate descent is to
estimate the polynomial coefficients C. To obtain these coefficients we minimise the MSE over the
training set with both L1 and L2 regularisation terms. Hence, we can derive the CCD update for
each coefficient Ci,j . We denote by Ĉ and Â the estimated values of C and A respectively. Then,
let us define yk = xk − Âxk−1 and wk =

∑
i′,j′ 6=i,j Ci′,j′Â

j′xk−i′ . The error term of Equation 2

as a function of Ci,j becomes
∥∥∥yk − wk − Ci,jÂ

jxk−i

∥∥∥2
2
. Thus, taking into account the L1 and L2

regularisation terms on C, the derivative of the Lagrangian with respect to Ci,j is zero if:

Ci,j =

S

(∑K
k=M

(
Âjx(k − i)

)T
(yk − wk) , (K −M)λc1

)
∑K

k=M

(
Âjx(k − i)

)T (
Âjx(k − i)

)
+ 2(K −M)λc2

. (7)

4

Hence, the CCD algorithm for C will loop over each coefficient Ci,j and update it with Equation
7. This step completes the block coordinate descent to obtain the CGP process from the observed
time series x. However, this CCD algorithm has three parameters: λ1 for LASSO penalty used to
obtain R1, and λc1 and λc2 for the L1 and L2 regularisation terms used to compute the polynomial
coefficients C. In this paper we focus on the estimation of the adjacency matrix A and the choice
of the LASSO parameter, while fixing the regularisation parameters of equation 7 to λc1 = 0.05 and
λc2 = 103, for which the algorithm appears to be reasonably robust, as is evident from the results.

4 Selecting the L1 coefficient

We now introduce two new non-parametric metrics to efficiently and automatically select the LASSO
coefficient, λ1, which directly influences the sparsity of the adjacency matrix A. A classic approach
for selecting this involves computing the cross-validation error. When applied to time series this
corresponds to computing a prediction error over an out-of-sample time window, see for example
Wu and Lange (2008); Mei and Moura (2015, 2017), in which the authors use the estimated CGP
variables Â and Ĉ to make a prediction and use the MSE to assess its quality. This technique implies
a direct relationship between the sparsity level of the adjacency matrix and the MSE of the prediction,
which is questionable in practice. Figure 1 plots the evolution of the prediction MSE over increasing
values of λ1, alongside the percentage difference in the number of edges between the estimated
adjacency matrix and the real one computed for a simulated CGP following a Stochastic Block Model
(SBM) graph, i.e. the difference in number of edges divided by the total possible number of edges.

It is clear that current techniques do not produce good results and we do not want to follow Friedman
et al. (2008); Wang (2013) in fixing different values of λ1 producing a sparse and a dense result
without knowing which one is correct. Thus, we need a metric that weights the improvement in
prediction error against an increased number of edges. In statistical modelling the AIC and BIC
criteria aim to avoid over-fitting by including a penalty on the number of input-variables, which works
when the number of output-variables to be predicted is not related to the selected set of input-variables.
However, in the case of an adjacency matrix the sparsity of each node also impacts the number of
nodes predicted; we want sparsity in the adjacency matrix to encourage each node to more accurately
predict a small subset of other nodes. Following this idea further we derive two new error metrics.

4.1 Two new distance measures for selecting the L1 coefficient

We want a distance metric that has no parameters and a maximum around the exact number of edges
of the adjacency matrix. An appropriately sparse adjacency matrix has few edges but enough to
accurately reproduce the whole CGP process. What is important is not the prediction quality obtained
by the complete adjacency matrix but rather the prediction quality of each node independently; the
adjacency matrix should have few edges connecting nodes with each connection having a low in- and
out-of-sample error. For each node we compute the errors of each connection with other nodes. We
sum these errors over all edges and compute the average over time divided by the number of edges.
From this error, we compute the sum over all nodes to obtain an error metric of the whole graph:

err =

N∑
j=1

1∑N
i=1 I{Aj 6=0}(i)

1

K −M

K∑
k=M

∥∥x(k)I{Aj 6=0} −Axj(k − 1)
∥∥2
2
, (8)

where 1Aj 6=0 corresponds to a vector of zeros with ones only where the lines of the column Aj of
the adjacency matrix A are non-zero. Compared to the in-sample MSE of node j the error metric
of Equation 8 focuses on the error in the nodes it is connected to. Since we divide by the number
of edges, the error should increase as sparsity increases, but it should start decreasing once the gain
in the prediction quality of each edge offsets the decrease in number. Intuitively this peak should
correspond to the underlying sparsity level of the graph under study; before the peak, the model has
too many parameters with poor individual prediction quality, whereas after the peak, the model has
too few edges with very low individual error.

The error metric of Equation 8 averages over the number of edges of each node j. Another approach
would be to work with the degree of the graph instead, by which we mean the sum of the absolute

5

values of the weights of the edges of node j. Thus we define the error with degree by:

errd =

N∑
j=1

1∑N
i=1 |Ai,j |

1

K −M

K∑
k=M

∥∥x(k)I{Aj 6=0} −Axj(k − 1)
∥∥2
2

(9)

We simulate a CGP on a stochastic block model following the methodology and parameters in Mei
and Moura (2015, 2017), which we describe in Section 5. On this simulated graph we test our
intuition by comparing the evolution of our error metrics as a function of the sparsity parameter λ1.
Figure 1 shows the evolution of these metrics as well as the commonly used in- and out-of-sample
MSE and the AIC and BIC criteria. On this figure both metrics, err and errd, perform as expected
while the others do not show any relationship to the number of edges in the adjacency matrix except
for the BIC criterion. While this graph represents only one sample of a simulated scenario, this
behaviour is consistent throughout the different simulations in Section 5. Interestingly, our two
metrics complement each other; on average, for dense graphics err often produces better results
while for sparser ones errd is often better. In practice we can use the following pragmatic approach
for robust results: if both metrics have a peak we take the mean value of the two resulting λ1, if only
one has a peak we take its value for λ1. The Table 2 in Appendix compares the performance of these
different metrics for different SBMs. It is interesting to observe that the performance of the two error
metrics we propose is on par with the BIC criterion and actually complement is. Indeed, we observe
the best results when averaging the selected λ1 of err, errd and BIC. Since the BIC criterion is
widely known, for the rest of this paper we will study the performance of the two new error distances
err and errd that we propose knowing that the resulting adjacency matrix would be better if the BIC
criterion was included.

Figure 1: Comparison of the evolution of different metrics as a function of the value of the LASSO
coefficient λ1 for a simulated CGP-SBM graph with 200 nodes, 5 clusters, 3 lags and 1040 time
points. The left axis indicates the number of different edges between the estimate and the true
adjacency matrix. The blue line shows the evolution of that difference as a function of the coefficient
λ1, while the red line highlights the zero mark. The different error metrics are rescaled to be between
0 and 1 on the right y-axis. We compare the two metrics proposed in this paper, err and errd, with
the in- and out-of-sample error, MSEin and MSEout, as well as the AIC and BIC criteria, AIC
and BIC

5 Applications

We are interested in two performance metrics: the accuracy of the LASSO coefficient selection,
assessed by measuring the difference in number of edges between the real and estimated adjacency
matrix; and the quality of the CCD algorithm, assessed by measuring the percentage of true positives
and false positives. For the computations we fix two parameters of our algorithm: the maximum
iterations maxIt = 50 and the convergence limit ε = 0.1. For the initialisation, we observe that the
algorithm performs better when starting from zeros, i.e. Rh = [0], than from random matrices. When
starting with matrices of zeros, due to the block coordinate structure of the algorithm, the first step

6

corresponds to solving the mean square problem of a CGP with only one lag, then the second step
considers a CGP with two lags, whereby we learn on the errors left by the first lag, and so on. Thus,
each step of the descent complements the previous lags by iteratively refining previous predictions.

We use the same causal graph stochastic block model (CGP-SBM) structure to assess the performance
of our algorithm as Mei and Moura (2017), and hence our results are directly comparable. However,
they focus on minimising the MSE and choose the LASSO coefficient that produces the best results.
Although our approach results in a higher MSE, we have shown in Section 4 that the MSE is not
linked to the sparsity of the graph. Thus, our algorithm obtains a more accurate estimate of the
adjacency matrix and its approximate sparsity.

The SBM consists of a graph with a set of clusters where the probability of a connection is higher
within a cluster than between them. This structure is interesting because it appears in a wide variety
of real applications. The parameters to simulate a CGP-SBM are the number of nodes, N , the number
of clusters, Nc, the number of lags, M and the number of time points, K. For each simulation we use
a burn in of 500 points. For a visual assessment of our proposed algorithm’s performance we show
in Figure 2 the absolute value of the adjacency matrix used to simulate the CGP and the estimation
we obtain with our algorithm. We note that it is hard to visually detect the discrepancies. Hence
we added in appendix Figure 4 to show the matrix of the differences between real and estimated
adjacency matrices and, Figure 3 to show the non-zero elements of each matrix and the matrix of
differences with a black square at each non-zero edge.

Figure 2: Estimated adjacency matrix Â, on the right; the true one A, on the left. Absolute values of
the weights are shown for better visualisation, with blacker points representing bigger weights. The
estimation was performed on a CGP-SBM graph with N = 100, Nc = 5, M = 3 and K = 1560.

We also wish to quantitatively assess the accuracy of the estimated adjacency matrix. Hence, we
measure the quality of the results by considering different metrics: the difference in the number of
edges between Â and A as a absolute value and as percentage of the total number of possible edges,
N2; the percentage of true positive, i.e. the number of edges in Â that are also edges in A over the
total number of edges in A; the percentage of false positive, i.e. the number of edges in Â that are
not in A over the total number of edges in Â; the mean squared error MSE = ‖Â−A‖22/N2. The
two metrics measuring the difference between the real and the selected number of edges assess the
performance of the selection of the sparsity coefficient λ1. The true and false positive rates assess the
performance of the CGP-CCD algorithm 1 to compute the adjacency matrix.

For assessing the consistency of the performance we simulate different environments and compute
the median of the measures obtained over 10 samples. In the simulated environments, the sparsity
level, i.e. the number of non-zeros elements in the adjacency matrix, varies between 1.4% and
3.0% with an average at 2.1%. Table 1 shows that the results are consistent for different graph
sizes, sparsity levels, lags and numbers of time points with a median over all the environments of
percentage-difference in number of edges of 0.41%, true positive rate of 65.9% and false positive rate
of 20.8%. Interestingly, even when the number of time points was too small to obtain accurate results,
i.e. high true positive rate, the percentage of different edges stays small, below 0.5%. The results in

7

Table 1: Differences between the adjacency matrix A and its estimate Â for different CGP-SBM
environments. NBDE: absolute difference in the number of edges between Â and A, and as a
percentage of the total number of possible edges N2 with NBDE (%). True positive: number of edges
in Â that are edges in A over the total number of edges in A. False positive: number of edges in Â
that are not in A over the total number of edges in Â. Mean squared error: MSE = ‖Â−A‖22/N2.

N Nc M K MSE NBDE NBDE (%) True positive False positive
100 5 3 1040 2.0× 10−4 40.5 0.41% (0.28) 72.4% (7.6) 20.8% (11.4)
200 5 3 1040 2.5× 10−4 115.0 0.29% (0.29) 65.9% (4.1) 25.4% (9.3)
200 10 3 1040 1.6× 10−4 198.5 0.50% (0.46) 67.0% (8.6) 26.1% (18.9)
200 5 5 1040 2.3× 10−4 208.0 0.52% (0.27) 63.9% (4.7) 26.2% (13.7)
200 5 3 2080 1.2× 10−4 135.5 0.34% (0.27) 73.7% (6.3) 21.1% (10.0)
500 5 3 2080 1.7× 10−4 1722.5 0.69% (0.26) 61.3% (4.6) 17.5% (4.9)
1000 10 3 2080 9.3× 10−5 4835.5 0.48% (0.26) 56.8% (6.7) 17.0% (9.7)
1000 10 3 4160 6.6× 10−5 3989.5 0.40% (0.27) 66.7% (8.5) 15.1% (9.7)
5000 50 3 5000 1.3× 10−5 87709.5 0.35% (0.05) 64.3% (3.5) 14.0% (8.6)

Median 1.7× 10−4 208.0 0.41% (0.12) 65.9% (5.2) 20.8% (4.7)

Table 1 assume we know the number of time lags of the underlying CGP we are looking for. Since
this assumption is unlikely to hold on real datasets we tested the reliability of the performances by
using wrong input parameters. We therefore simulated a graph with M = 5 lags and ran the learning
algorithm for M = 3 lags and vice-versa, in both scenarios the average results were approximately
unchanged. Section 5.2 further studies the performance of the algorithm on real datasets with
unknown parameters.

5.1 Computation time complexity

All the computations employed Python 2.7 using Numpy and Scipy-sparse libraries, which can use
up to 4 threads. The Stochastic Gradient projection (SGP) method used by Mei and Moura (2015,
2017) is especially efficient for highly sparse environments, which can leverage sparse matrix-vector
computation. In our environment, when we have a graph with more than 1% of non-zero weights
a matrix-matrix or matrix-vector multiplication using the sparse function of Scipy-sparse is slower
than using the dense functions of Numpy. Thus, for graphs with an adjacency matrix with more than
1% of non-zero edges we use the dense library. For example, on a CGP-SBM graph with parameters
(N,Nc,M,K) = (200, 5, 3, 2080) with 2, 4% of non-zeros edges, our CCD algorithm solves the
optimisation of Equation 5 to obtain the matrix R1 faster than the SGP algorithm by more than
100-fold. When the graph size increases to N = 500, CCD is faster than by more than 350-fold.

We perform an empirical time complexity estimation of the complete block coordinate descent
algorithm by measuring the evolution of the execution time as a function of each parameter
(N,Nc,M,K) individually. Increasing the number of time lags M has a negligible effect on
the execution time of the CCD to obtain the adjacency matrix, although the computation of the
polynomial coefficients C scales quadratically with the lags M . We observe that the execution time
is not affected by the sparsity level Nc. However, it scales linearly as function of the number of time
points K and quadratically as a function of the number of nodes N . This quadratic complexity in N
can be tempered in different ways however. In the case of highly sparse graphs we can leverage sparse
libraries, and an even faster solution for both dense and sparse graph is to perform the computations
on a GPU. Indeed, Algorithm 1 does not use much memory and can thus be computed entirely in the
GPU memory. With a GPU implementation using the library PyTorch, the algorithm has a 20-fold
speed-up compared to our CPU implementation with matrix computations parallelised over 4 threads.

5.2 An application to financial time series

We now apply our algorithm to a real dataset of stock prices consisting of the 371 stocks from the
S&P500 that have quotes between 2000/01/03 and 2018/03/27. Since we do not know the exact
adjacency matrix of this environment, we test the accuracy of the obtained graph by studying how it
changed following a known market shock. More specifically we compute two graphs, one before and
one after the financial crisis of 2008/2009. For both graphs to use the same number of time points, the

8

first uses prices from 2004/11/15 to 2009/01/01 and the second from 2009/11/12 to 2014/01/01.
We chose to build the graphs with a 4 year time window, K = 1040, since in simulations with the
same number of nodes it produces good results. The lag was fixed to one week, M = 5, since there
are documented trading patterns at a weekly frequency. We note that in the time windows studied
modifying the lags to M = 3 or M = 10 has negligible impact on the results.

For both time windows the error metrics peaked at slightly different values, thus we took the mean of
the two for estimating the LASSO coefficient. Interestingly, the algorithm selects a much sparser
matrix after the crisis with a sparsity level decreasing from 5.1% to 2.8%. This points to a more
inter-connected market leading up to the crisis. Since the crisis was due to sub-prime issues, one
might expect real-estate and financial firms to have many edges in the graph and influence the market
in the pre-crisis period, with the importance of these firms decreasing after the crash. Indeed, this
aspect is reflected in the estimated adjacency matrix; before the crisis, financial firms represent more
than 60% of the top ten nodes with the highest number of connections, while it decreases to less
than 40% afterwards, including insurance firms. Furthermore, before the crisis the firm with the
highest number of connection was GGP Inc., a real estate firm which went on to file for bankruptcy in
2009. While financial and oil firms represented more than 70% of the top 20 most connected nodes
before the crisis, the graph of 2014 is much more diversified with more sectors in the top 20 and none
representing more than 30%. Figure 5 in the appendix shows the evolution of the adjacency matrix
before and after the crisis, and we can see the shift in importance and the increase in sparsity. Overall,
the post-crisis market is sparser and less concentrated than before 2009, with fewer edges linked to
financial firms.

Since the CGP-CCD algorithm automatically selects the sparsity level, in addition to studying the
different connections we can also study the evolution of the sparsity level. Figure 6 shows the
evolution through time of the sparsity level of the adjacency matrix and of the log realised variance,
log(RV), of the market. We computed the adjacency matrix every 6 months and the corresponding
log(RV) at the last date of that time window. We can observe an interesting correlation between the
increase in density of the causal graph and the increase in the realised variance.

6 Conclusion

We have proposed a novel cyclical coordinate descent algorithm to efficiently infer the directed
adjacency matrix and polynomial coefficients of a causal graph process. Compared to the previous
state-of-the-art our solution has lower complexity and does not depend on the sparsity level of the
graph for scalability. Furthermore, we propose two new error metrics to automatically select the
coefficient of the LASSO constraint. Our solution is able to recover approximately the correct number
of edges in the directed adjacency matrix of the CGP. The performance of our algorithm is consistent
across the different simulated stochastic block model graphs we tested. In addition, we provided an
example application to a real-world dataset consisting of stocks from the S&P500, demonstrating
results that are in line with economic theory.

References

Banerjee, O., L. El Ghaoui, and A. d’Aspremont
2007. Model Selection Through Sparse Maximum Likelihood Estimation. arXiv.org.

Friedman, J., T. Hastie, and R. Tibshirani
2008. Sparse inverse covariance estimation with the graphical lasso. Biostatistics.

Mei, J. and J. e. M. F. Moura
2017. Signal processing on graphs: causal modeling of unstructured data. IEEE Transactions on
Signal Processing, 65(8):2077–2092.

Mei, J. and J. M. F. Moura
2015. Signal processing on graphs: Estimating the structure of a graph. In ICASSP 2015 -
2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Pp. 5495–5499. IEEE.

9

Meinshausen, N. and P. Bühlmann
2006. High-dimensional graphs and variable selection with the Lasso. The Annals of Statistics,
34(3):1436–1462.

Shojaie, A. and G. Michailidis
2010a. Discovering graphical Granger causality using the truncating lasso penalty. Bioinformatics,
26(18):i517–i523.

Shojaie, A. and G. Michailidis
2010b. Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic
graphs. Biometrika, 97(3):519–538.

Tseng, P.
2001. Convergence of a block coordinate descent method for nondifferentiable minimization.
Journal of Optimization Theory and Applications, 109(3):475–494.

Wang, H.
2013. Coordinate descent algorithm for covariance graphical lasso. Statistics and Computing,
24(4):521–529.

Wu, T. T. and K. Lange
2008. Coordinate descent algorithms for lasso penalized regression. The Annals of Applied
Statistics, 2(1):224–244.

7 SUPPLEMENTARY MATERIAL

7.1 Detailed derivation of the CCD equations

7.1.1 For i > 1

Recall the Utility function for i > 1 detailed in Equation 3:

L(Ri) =
1

2

K−1∑
k=M

(
Si
k −Rix(k − i)

)T (
Si
k −Rix(k − i)

)
,

With Si
k = x(k)−

∑M
l 6=iRlx(k − l). Then, the derivative of this function with respect to the matrix

Ri is:

∂L(Ri)

∂Ri
= Ri

K−1∑
k=M

x(k − i)x(k − i)T −
K−1∑
k=M

Skx(k − i)T .

This derivative is equal to zero if Ri follows the Equation 4:

Ri =

(
K−1∑
k=M

Si
kx(k − i)T

)(
K−1∑
k=M

x(k − i)x(k − i)T
)−1

.

However, the matrix denominator
∑K−1

k=M x(k − i)x(k − i)T is not guaranteed to be positive semi-
definite. In case of singularity we can add an L2 regularisation term, λ2‖Ri‖22, to the utility function
of Equation 3. With this coefficient the updating equation of matrix Ri becomes:

Ri =

(
K−1∑
k=M

Si
kx(k − i)T

)(
K−1∑
k=M

x(k − i)x(k − i)T + 2λ2IN

)−1
.

With IN the identity matrix of size N . Thus, with this coefficient we add noise to the diagonal of the
matrix to make it non-singular. In practice, Since this coefficient adds a bias, we select the lowest
value of the coefficient λ2 that makes this matrix non-singular.

10

7.1.2 For i = 1

In the case of i = 1 we apply the CCD algorithm by iterating over the columns, let us recall the
Lagrangian detailed in Equation 5:

L(Rj
1) =

1

2

K−1∑
k=M

∥∥∥S1
k −R

−j
1 x−j(k − 1)−Rj

1x
j(k − 1)

∥∥∥2
2

+ λ1|Rj
1| .

which is a non-differentiable function due to the LASSO regularisation term. Thus we compute the
sub-gradient of the Lagrangian with respect to the vector of the column Rj

1:

∂L(Rj
1)

∂Rj
1

= Rj
1

K−1∑
k=M

(
xj(k − 1)

)2 − K−1∑
k=M

[
S1
k −R

−j
1 x−j(k − 1)

]
xj(k − 1)T + λ1Γj .

Where Γj(i) = sign(Rj
1(i)) if Rj

1(i) 6= 0, else Γj(i) ∈ [−1, 1] if Rj
1(i) = 0. Which is why we

introduce the soft-thresholding function S(a, b) = sign(a)(|a| − b)+, where sign(a) is the sign of a
and (y)+ = max(0, y). Hence, the derivative is equal to zero if Rj

1 follows Equation 6:

Rj
1 =

S
(∑K−1

k=M

(
S1
k −R

−j
1 x−j(k − 1)

)
xj(k − 1), λ1

)
∑K−1

k=M (xj(k − 1))2
.

7.2 Figures & Tables

In Table 2, in order to compare the different distance measure to select the coefficient λ1 we ran the
computations for a simulated CGP-SBM with the same performance metrics as in Table 1. We used a
grid of λ1 ∈ [30, 300] with a step of 5; in this window the AIC and MSEin did not converge, hence
we report the result obtained for the smallest value λ1 = 30. While on a small graph, with 200 nodes,
the BIC has results on par with our distance measures err & errd, for a larger problem with 500
nodes the difference in performance becomes more significant. In these experiments, the BIC criteria
is smoother than err & errd but often overestimates the number of connections compared to err &
errd. Thus, the average of those three metrics err & errd & BIC gives results for the NBDE with
lower variance than the others, for a small decrease in accuracy compare to err & errd alone.

Table 2: Differences betweenA and its estimate Â on CGP-SBM graph for different distance metrics.
Distance measure N Nc M K NBDE NBDE (%) True positive False positive
Err & Errd 200 5 3 1040 242 0.39% (0.35) 62.7% (6.0) 15.4% (9.3)
BIC 200 5 3 1040 175 0.48% (0.20) 62.8% (4.1) 21.8% (5.8)
MSEout 200 5 3 1040 615 1.54% (0.35) 40.3% (11.6) 0.2% (3.2)
AIC 200 5 3 1040 8124 20.31% (5.36) 82.2% (4.2) 91.0% (3.5)
MSEin 200 5 3 1040 8124 20.31% (5.36) 82.2% (4.2) 91.0% (3.5)
Err & Errd 500 5 3 2080 785 0.31% (0.33) 63.0% (7.0) 23.9% (10.4)
BIC 500 5 3 2080 1552 0.62% (0.33) 74.3% (4.5) 40.8% (9.0)
Err & Errd & BIC 500 5 3 2080 942 0.38% (0.28) 66.8% (5.5) 27.1% (10.9)
Err & Errd 1000 10 3 2080 4059 0.33% (0.34) 64.9% (8.9) 18.8% (9.3)
BIC 1000 10 3 2080 3106 0.31% (0.21) 71.3% (6.9) 35.8% (9.2)
Err & Errd & BIC 1000 10 3 2080 1965 0.16% (0.33) 67.8% (8.1) 24.8% (9.9)

11

Figure 3: This figure compares the selected edges of the estimated adjacency matrix Â, in the middle,
to the true one A, on the left. The right matrix correspond to the difference these two matrices. Each
black square corresponds to an edge with non-zero weight. The estimation was performed on a
CGP-SBM graph with N = 100, Nc = 5, M = 3 and K = 1300.

Figure 4: This figure compares the estimated adjacency matrix Â, on the right, to the true one A,
on the left. The right matrix correspond to the difference these two matrices. To obtain a better
visualisation the plots represent the absolute values of the weights, hence the blacker the bigger the
weight. The estimation was performed on a CGP-SBM graph with N = 100, Nc = 5, M = 3 and
K = 1300.

12

Figure 5: This figures shows the obtained adjacency matrix for a weekly lagM = 5 on 467 European
stocks computed using data between 06/11/2003 and 01/01/2008 on the left, and 03/11/2009 to
01/01/2014 on the right. The stocks are grouped by financial sectors using the BCIS (Bloomberg
Industry Classification Standard) sector classification. For a better visualisation we do not show the
weight of the edge but instead a black square for every non-zero edge. The sparsity level was selected
by taking the average λ1 value obtained with the error metrics err and errd.

Figure 6: For 371 stocks from the S&P500, evolution of the sparsity level of the adjacency matrix,
left y-axis, and the log(RV) on the right y-axis. The coefficient λ1 value obtained with the error
metrics err and errd. We define the sparsity level by the percentage of non-zeros edges, hence 100.0
corresponds to a fully connected graph. We estimate the variance of the market by the average of
the log-Realised-Variance, log(RV), of each stock. We computed the log(RV) with exponential
weighting on the daily log-returns, using a coefficient of 0.99 and time window of 40 days.

13

