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Abstract. ​The spread of toxic content online has attracted a wealth of research             
into methods of automatic detection and classification in recent years. However,           
two limitations still exist: 1) the lack of support for multi-label classification;            
and 2) the lack of understanding of the impact of the typical unbalanced             
datasets on such tasks. In this work, we build three state of the art methods for                
the task of multi-label classification of toxic content online, and compare the            
effect of training data size on their performance. The three methods of choice             
are based on Support Vector Machine (SVM), Convolutional Neural Networks          
(CNN) and Long-Short-Term Memory Networks (LSTM), respectively. We        
conduct learning curve analysis and show that CNN is the most robust method             
as it outperforms the other two regardless of the sizes of the dataset, even on               
very small amounts of data. This challenges the conventional belief that Neural            
Networks require significant amounts of data to train accurate models. We also            
empirically derive indicative thresholds of training data size to help determine a            
reliable estimate of classifier performance, or maximise potential classifier         
performance in such tasks. 

Keywords:​ toxic content, hate speech, machine learning, CNN, LSTM, SVM, deep 
learning, natural language processing, information retrieval 

1 Introduction 

The rise of various social media platforms encourages the ever-increasing          
user-generated content (UGC), which broadly refers to any form of content created by             
users and made available publicly online. While such platforms are changing the ways             
we access and share information, at the same time, they are also increasingly             
exploited for the creation and propagation of ‘toxic content’. This refers to the UGC              
that is abusive, disrespectful or otherwise likely to make someone leave a discussion.             
It can include many types of content such as hate speech, cyber bullying and abusive               
language [1]. Previous research showed that at least 41% of Americans have been             
subjected to abusive comments online [2], while 80% of young people in the             
European Economic Area could have been targets of hate speech [3].  
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Building effective countermeasures for toxic content online requires as the first           
step, identifying and tracking such content efficiently. While social media companies           
have been investing hundreds of millions of euros each year to moderate and remove              
such content manually [4], the industry is now looking at methods that partially             
automate these processes in order to cope with the Web scale [5] .  

An enabling task for this process is to distinguish toxic from non-toxic content, or              
different types of toxic content. We call this task ‘toxic content detection’, or             
‘classification’, and it broadly covers an extensive range of recent research on            
detecting hate speech [4, 6], abusive and offensive language [7], and cyberbully [8].             
Despite an increasing number of related research in recent years, we identify three             
limitations. First, previous work only studied a particular type of toxic content, such             
as hate speech [4, 6], or cyberbully [8]. Toxic content in general, can include these but                
also other types, and there could be interesting correlations among these types.            
Second, the majority of studies have assumed the ‘one-against-others’ rule, i.e., the            
different types of toxic content are mutually exclusive. Practically this is hardly the             
real case, as hate speech could be at the same time abusive, or threatening. Third, a                
consistent finding from previous work is that typical datasets of toxic content are             
extremely unbalanced, such that there are ‘minority’ types suffering from insufficient           
data to train accurate classifiers [6]. However, it remains unclear how the size of              
training data effects classification accuracy, or whether there is a threshold of            
‘sufficient’ training data for such tasks. 

We address these limitations by developing three state of the art methods applied to              
multi-label classification of the largest collection of toxic content dataset, and           
empirically study the effect of training data size on the classification accuracy, or in              
other words, their ‘learning curve’. We show that a convolutional neural network            
(CNN) based method consistently performs best, and also ‘learns faster’ as it was able              
to achieve better results with reduced training data. This challenges our conventional            
perspective that deep neural network based methods require significant amount of           
data to perform well. The remainder of this paper is structured as follows. Section 2               
reviews related work. Section 3 describes our methodology. Section 4 presents our            
experiments and discusses findings, followed by conclusion in Section 5.  

2 Related Work 

2.1 Text classification 

The detection of toxic content is a type of text classification problem, which is a               
widely used technique in natural language processing that aims to classify the given             
texts or documents (called ‘instances’) into categories (classes, labels, or types) [9].            
The problem is solved by training a ‘supervised’ machine learning classifier using            
human-labelled training data (already classified texts). A typical workflow involves          
data pre-processing, feature extraction, and algorithm or model training.         
Pre-processing reduces the language complexity by, e.g., stopword removal and          
stemming. Feature extraction represents instances in a high dimensional vector space           
for algorithmic consumption. Then an algorithm is applied to the training data using             
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the extracted features, to train a model able to classify similar, unseen instances             
represented in the data. 
2.2 Toxic content classification 

Types of toxic content​. While recent years have seen significant increase in research             
on toxic content classification, the majority of these focus on only a single type (and               
its subtypes) of content. These include a large number of work on hate speech              
classification [4, 6, 10-14], some work on abusive and offensive language [5, 15-18,             
28], cyberbully [7, 8, 19, 20], or discrimination detection [21]. To our knowledge,             
Kumar et al. [29] organised the first effort examining different types of toxic content              
including trolling, aggression, and cyber bullying. However, these studies adopt the           
‘one-against-others’ classification principle. As an example, a hateful message can be           
‘sexism’ or ‘racism’, but not both [11].  

Types of features. Although the specific types of toxic content can vary in the              
tasks, they often share similar features. Schmidt and Wiegand [14] summarised           
several commonly used types of features. The most frequently used, ​simple surface            
features, include words, word or character n-grams, content length, capitalisation, and           
in the context of social media platforms, URLs and hashtags. ​Word generalisation            
includes examples such as word clusters [22], or word embeddings [23]. ​Linguistic            
features can be, e.g., Part of Speech and dependency relations. Features such as             
sentiment​, ​dictionaries of indicative keywords and ​user information ​(e.g., gender,          
frequent vocabulary) were also used. 

Types of algorithms. ​Zhang et al. [6] summarised machine learning algorithms           
used in the literature into two types: classic and deep learning based algorithms. The              
first requires manually designing and encoding features of instances - such as those             
described above - into feature vectors, which are then directly used by the algorithms              
for classification. Examples include Support Vector Machines (SVM) [6, 15, 16, 18,            
22], Logistic Regression [18, 23], Naive Bayes [12, 15, 18, 21], and Random Forest              
[16], with SVM being the most frequently used. The second employs deep artificial             
neural networks (DNN) to learn abstract feature representations from input data           
through its multiple stacked layers. The input is often simply the raw text data, but               
can also take various forms of feature encoding as those used in the classic methods.               
The most popular network structures use either Convolutional Neural Networks          
(CNN) [4, 6, 10, 13] or Long-Short Term Memory (LSTM) [6, 10] that is a type of                 
Recurrent Neural Networks. A conventional viewpoint is that DNN based methods           
require significant amount of data to train [24], as they naturally involve significantly             
more parameters to learn compared to classic algorithms. However, in the context of             
toxic content detection, there are no comparative studies on the learning curves of             
DNN or classic algorithms. The question of ‘how much data are enough’ remains             
unanswered. 

3 Methodology 

To address the limitations described before, we propose a comparative study of            
existing methods on multi-label toxic content classification, with an analysis of their            
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learning curves. In the following we firstly describe our methods for multi-label            
classification, followed by an explanation of how we conduct learning curve analysis            
using these methods. 
 
3.1 Classification methods 

We choose three most often used methods for comparison: SVM, CNN, and LSTM. 
SVM. This represents the most popular ‘classic’ algorithm for toxic content           

classification. The principle of SVM is to learn parameters to draw a ‘separating             
hyperplane’ that maximises the distance between the different classes in the training            
data. For each text to classify, we extract both unigram and bigrams as its features as                
they were shown to be the most effective features for text classification [25]. These              
are then weighted by the Term Frequency Inverse Document Frequency algorithm           
often used in Information Retrieval.  

SVM essentially classifies data based on the ‘one-against-others’ principle. To          
adapt it for multi-label classification, we apply the concept of ‘label powerset’, which             
transforms a multi-label problem into a single-label, multi-class problem by          
considering every label combination set as a single label [26]. As an example,             
instances assigned both the class labels ‘sexism’ and ‘racism’ are treated as a separate              
class from those assigned ‘sexism’ or ‘racism’ alone. Although this increases the            
potential number of classes in a dataset and reduces the amount of training data per               
class, it is the easiest, natural solution that allows taking into account the correlation              
between class labels [27].  

CNN. The CNN model consists of a sequence of an embedding layer taking an              
input text, followed by a convolutional layer, a max pooling layer and a dense layer to                
output the final classification result. The embedding layer assigns weight to each            
word in the input text as a fixed dimension, real-valued vector. Each dimension             
indicates the relative weight of the word for a ‘latent’ concept. These weights and              
latent concepts are learned from a large text corpus, either from the training dataset              
itself as part of the training process, or on an external, domain-independent corpus             
such as the 840 billion words GloVe corpus . Here we choose not to use pre-trained               1

embeddings to exclude potential influences from external resources. The embedding          
layer also assumes an input text to contain a uniform number of ​l ​words, and learns to                 
project each word into a ​d dimension vector space. Longer texts will be truncated              
while shorter ones are padded with arbitrary placeholders.  

Then a convolutional layer scans a fixed sliding window of ​cw ​consecutive words             
with a stride of ​cs from the output of the embedding layer and transforms each                
scanned sequences into an abstract feature. These output features are concatenated,           
and further ‘pooled’ by a max pooling layer, which scans the previous feature             
representation by a fixed sliding window of ​pw and a stride of ​ps to generate new                
features. They are finally flattened into a vector as the final feature representation to              
be classified by the last dense layer. This uses the softmax function to calculate a               
probability distribution over the set of possible classes seen in the training dataset.  

1 ​https://nlp.stanford.edu/projects/glove/​, last retrieved in September 2018 

https://nlp.stanford.edu/projects/glove/
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Intuitively, the CNN examines adjacent sequences of words in a text and attempts             
to extract abstract features from such sequences. 

LSTM​. The LSTM model starts with the same embedding layer as that in the              
CNN, followed by an LSTM layer that extracts further abstract features from the             
embedding layer, and finally passes these features to the same dense layer for             
classification. LSTM is designed to capture long distance dependencies between its           
input features. Intuitively, it ‘remembers’ words it has seen before the current word in              
a sentence and their order, and hypothesizes that this ‘history’ and order would             
‘explain’ the meaning of the current word.  

 
For both CNN and LSTM, we use the categorical cross entropy loss function and              
Adam optimiser to compile and train the model, using a batch size of 64 with 5                
epochs. The first is empirically found to be more effective on classification tasks than              
other loss functions including classification error and mean squared error [31], and the             
second is designed to improve the classic stochastic gradient descent (SGD) optimiser            
and in theory combines the advantages of two other common extensions of SGD             
(AdaGrad and RMSProp) [30]. Both methods produce a probability distribution over           
candidate classes seen in the dataset for an input text. We assert that classes with a                
probability greater than 0.5 are the final labels for the text.  

For all models, we conduct a 5-fold cross validation experiment and calculate the             
the classic Precision, Recall and F1 scores for each class as well as their              
micro-average for the dataset. Compared to methods used in the literature, all of our              
methods are relatively simple. The reason is to focus on the algorithmic difference,             
but excluding influence from feature engineering and complex network structures.  
 
3.2 Learning curve analysis 

To investigate the effect of training data on a method’s performance, given a target              
dataset, we create random subsets of the dataset in 5% increments. In other words, we               
obtain 20 datasets, starting with a minimum size of 5% of the original dataset, up to                
100%. We then conduct 5-fold validation of a method using each of these datasets to               
evaluate its performance. This allows us to gauge the change in the method’s             
performance as we increase training data.  

4 Experiment and Discussion 

4.1 Dataset 

We use a dataset published by Conversation AI . This contains comments collected            2

from Wikipedia Talk Page, which is a function of Wikipedia allowing users to discuss              
improvements to the articles. The comments are anonymised and annotated with           
toxicity reasons and toxicity levels. This creates six class labels: ‘toxic’, ‘severe            

2 ​https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge​. Last   
retrieved in September 2018 

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
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toxic’, ‘obscene’, ‘threat’, ‘insult’ and ‘identity hate’. ‘Obscene’, ‘threat’, ‘insult’ and           
‘identity hate’ are four sub-labels for ‘toxic’ and ‘severe toxic’ comments (therefore            
they can co-occur on a comment). The ‘toxic’ comments that are not ‘obscene’,             
‘threat’, ‘insult’ or ‘identity hate’ are assigned to either ‘toxic’ or ‘severe toxic’. The              
‘clean’ comments are excluded from this dataset. This results in a dataset of a total of                
16,225 toxic comments, with a label distribution shown in Figure 1. The dataset is              
then pre-processed by 1) lowercase conversion; 2) filtering non-alphabetic characters;          
and 3) removing extra white spaces resulted in this process.  
 

 

Fig. 1.​ Distribution of different class labels in the dataset 

4.2 Implementation and parameters 

For the SVM based method, we used the Python Scikit-Learn library implementation.            3

All default hyperparameters of the algorithm are used. For the CNN and LSTM             
methods, we used the Keras library with TensorFlow for implementation. For CNN,            4 5

we set ​cw=​4​, cs=​1​, pw=​2​, ps=​2. For both CNN and LSTM, we set ​d​=128, and ​l​=120,                
i.e., we assume a uniform length of 120 words for every comment, which is long               
enough to encode the entirety of most comments as most of them have fewer than 50                
words, as shown in Figure 2. For the longer comments that are minority in the dataset,                
this implies that their contents are not fully represented as words beyond the 120 limit               
are truncated. However, this is a reasonable trade-off for practical reasons, as very             
long texts can significantly increase computation. All the parameters are rather           
arbitrary, as our goal is not to maximise the performance of any method. All              
experiments were performed using GPUs on Google Colaboratory . 6

3 ​http://scikit-learn.org/stable/​. Last retrieved in September 2018 
4 ​https://keras.io/​. Last retrieved in September 2018 
5 ​https://www.tensorflow.org/​. Last retrieved in September 2018 
6 ​https://colab.research.google.com/​. Last retrieved in September 2018. 

http://scikit-learn.org/stable/
https://keras.io/
https://www.tensorflow.org/
https://colab.research.google.com/
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Fig. 2.​ Distribution of length (as number of words) of toxic comments 

4.3 Correlation analysis 

Considering a Pearson correlation of at least 0.5 to be ‘strong’, Figure 3 shows three               
pairs of strongly correlated classes: ‘insult’ and ‘toxic’, ‘obscene’ and ‘toxic’, and            
‘insult’ and ‘obscene’. The last pair has the strongest correlation of 0.74, implying             
that ‘insult’ comments also tend to be ‘obscene’ at the same time, and vice versa.               
Such correlations could be useful clues to classifiers.  
 
4.4 Multi-label classification: overview of results 

Table 1 shows the evaluation results obtained by the three methods on the ​entire              
dataset. In terms of F1, CNN outperforms both SVM and LSTM, sometimes quite             
significantly (e.g., on ‘threat’). However, SVM is arguably the best performer in            
terms Precision, while LSTM only has very marginal advantage in Recall. Comparing            
different classes, there is a strong pattern that all models perform much better on              
‘large’ classes, i.e., ‘toxic’, ‘obscene’ and ‘insult’ which have more than 7,000            
instances, where all three methods have obtained F1 scores higher than 80% except             
SVM on ‘insult’. In contrast, their performance on the other three ‘smaller’ classes             
containing less than 2,000 instances is significantly worse, with F1 scores between            
47% and 73%.  

The conclusions we can draw seem to be that, on the whole, CNN is the most                
effective method on this task. All methods suffer significantly on ‘small’ classes when             
the amount of training data is small, or in other words, they can benefit from more                
data. It is worth to note that on the smallest class ‘threat’, CNN performs particularly               
well, even beating its own performance on the much larger class ‘severe toxic’.  

Thus the questions still remain that to what extent can a method benefit from more               
training data, and does CNN consistently perform better than the other methods on             
small data. We answer these questions in the next section. 
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Fig. 3.​ Correlation analysis between different classes 

Table 1.​ Results obtained on the entire dataset. P - Precision, R - Recall. For each measure and 
each class, the highest figure is highlighted in ​bold​. Numbers in brackets indicate the number 

of instances for that class. 

 
Class 

SVM LSTM CNN 
P R F1 P R F1 P R F1 

Toxic (15,294) 94.1 70.0 80.3 87.9 86.0 86.9 90.5 86.5 88.4 
Severe toxic (1,595) 70.1 47.8 56.8 67.7 54.2 60.1 74.8 57.2 62.8 
Obscene (8,449) 92.5 77.8 84.5 89.9 86.6 88.2 90.5 87.3 88.8 
Threat (478) 85.2 48.0 61.3 82.2 34.3 47.1 83.6 60.3 69.7 
Insult (7,877) 86.0 72.8 63.9 85.4 79.0 82.0 85.8 83.2 84.4 
Identity hate (1,405) 83.0 52.0 63.9 76.9 49.3 60.1 80.6 66.4 72.8 

Average 90.3 70.5 79.2 86.7 81.0 83.8 88.3 83.5 85.8 

 

4.5 Multi-label classification: learning curve 

To address the questions we raised before, here we analyse the learning curves of the               
three methods. Figure 4 compares the learning curves (micro-average F1) of the three             
methods on a 5% increment of the entire dataset. To show a complete picture, below               
5%, we record the performance at every 1% increment.  

The figure shows that, clearly, CNN ‘learns’ faster and better than both SVM and              
LSTM, as it consistently outperforms the two methods starting from just 2% of the              
entire dataset. LSTM on the other hand, only overtakes SVM beyond the 25% mark,              
suggesting that it learns much slower and arguably, the most sensitive method to data              
size. For all three methods, it appears that the benefits from the increase of data size                
are the most significant before 25% where the growth of performance is nearly             
exponential. This slows down dramatically and beyond 80%, there is tendency for            
performance to plateau, which did not happen on our dataset, suggesting that all three              
models may still benefit from additional data. But arguably, the trade-off between            
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gains in performance and effort spent on obtaining additional training data may            
become significantly unbalanced thereafter. 

 

 

Fig. 4.​ Learning curves of the three different methods 

Using the best performing CNN as example, Figure 5 shows its detailed learning             
curve on each class in the dataset. We can see that the learning curves for ‘toxic’,                
‘insult’ and ‘obscene’ classes follow the general pattern described above. This is            
because they are the majority classes in the dataset. For all three classes, it follows               
that beyond the 80% mark, the performance tends to plateau. Among them, ‘obscene’             
is the smaller class, and this threshold corresponds to around 7,000 instances. This             
could be considered a general indication of the minimum number of instances in such              
tasks to maximise the potential performance of a classifier.  

 

 

Fig. 5.​ Learning curves of the CNN method on a per-class basis 
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The story for the three minority classes, i.e., ‘severe toxic’, ‘threat’, and ‘identity             
hate’, is quite different. For all these classes, the performance of the CNN classifier              
continues to rise as we increase the amount of data. While the speed of increase slows                
down gradually, there is no tendency of them to plateau, suggesting that the classifier              
can still benefit from further training data on these classes. In other words, the amount               
of training data for these classes (between 478 and 1,595) could be insufficient. 

Finally, we can notice the ‘zig-zag’ pattern in the performance figures for all             
classes except ‘toxic’ and ‘obscene’ below the 5% mark, suggesting that below this             
threshold, the amount of training data could be far too inadequate such that the              
performance estimates of the classifiers may be unreliable. Based on the largest class             
of the four (i.e., ‘insult’), this corresponds to about 400 instances, which can be              
considered a general indication of the minimum amount of training data in order to              
obtain reliable estimation of a classifier performance in such tasks.  

5 Conclusion 

This work looked at the task of multi-label toxic content classification, which is more              
general than the extensively studied problems of hate speech, cyberbully, and abusive            
content detection, and has not been examined before. Using the largest dataset known             
to date, we implemented and compared three frequently used methods in similar tasks,             
including SVM, CNN and LSTM. We showed that among the three, CNN performs             
the best overall in terms of F1, while SVM is arguably the winner in terms of                
Precision. However, in terms of learning curves, contrary to the conventional belief            
that deep neural network based methods require substantial data to perform well, our             
experiments have shown that on this very specific task, CNN appears to be the most               
robust among the three, as it ‘learns’ faster and consistently outperforms SVM and             
LSTM on varying sizes of training data. We also empirically derived indicative            
‘thresholds’ of the minimum amount of training data in order to obtain reliable             
estimate of a classifier performance, and that to maximise its potential performance. 

Our future work will focus on two directions. First, we will apply our study to               
other similar tasks and datasets to understand the generality of our findings. Second,             
we will investigate methods that ‘compensate’ the lack of training data, such as             
transfer learning and multi-task learning. 
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