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Abstract : Computer simulations are used to test how the branching process model is available 
to discuss the 1 �⁄  problem with the equations described in my previous paper, in which each 
single particle may branch into several particles, be absorbed or be observed by a detector.  In 
this work it is assumed that exactly two particles are produced by a branching.  The 
simulations demonstrate that the power spectrum of a series formed by time intervals between 
successive detections of particles is characterized by a 1 �⁄  distribution in a wide range of 
frequency (more than seven decades) when a branching rate of a particle is equal to an 
absorption rate of the particle in the medium.  When the branching rate is less than the 
absorption rate, the power spectrum turns off from a 1 �⁄  distribution in a lower 
frequency-range. 

 
 
1. Introduction 
  The mathematical expressions for generating time series of events are given in the previous 
work(1,2) by using the branching process model.  For a medium in which a particle may be subjected 
to absorption and branching reactions, the conditional probability ),( tnPk  that n particles are 
found in the medium at time � > 0 after we had k particles at � = 0 in the presence of random 
particle immigration with the rate S is given in Refs. (1) and (2) as 
 �� ��, �	 = 
��(���)��(�)

�

���
, (1-1) 

where ��(���) and ��(�) are the contribution of the k particles in the medium at � = 0 and of the 
particle immigrating into the medium during the time interval (0, t), respectively.  They are given 
here again. 
 ��(���) = 

��, �	���������	
,

���

	��
 (1-2) 

and 
 ��(�) = ��,�. (1-3) 
When the multiplication rate of a particleμand the parameterαare defined as 
 μ = �� ��⁄  and α = �� − �� = (1 − �)��, (1-4) 
where �� and �� are the absorption and branching rates, respectively, of a particle, the function 
(�, �) for the case of binary branching process in Eq. (1-2) is given as 
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��, �	 = ⎩⎪⎨⎪⎧
��        (� = 0)� 1 − �

1 − ���
��� ��
�        (� = 1)��� ∙ 
(� − 1, �)        (� ≥ 2)
, (1-5) 

in the case of μ ≠ 1 (subcritical case), and 
 
��, �	 = ⎩⎪⎨⎪⎧

��       �� = 0	��������       �� = 1	�� ∙ 
(� − 1, �)       �� ≥ 2	, (1-6) 

in the case of μ=1 (critical case).  Here, the functions W1 and W2 are defined, respectively, as 
 �� = 1 − ��
�

1 − ���
�, (1-7) 
and 
 �� = ������ + 1. (1-8) 
The contribution of the particle immigration ��(�) is obtained as, when μ ≠ 1 
 ��(�) = � exp � �

��� ln ���
��������       (� = 0)

�
�������

� ��� ∙ ��(���)       (� ≥ 1)
, (1-9) 

and whenμ=1 
 ��(�) = �exp �− �

�� ln (1 + ���)�       (� = 0)
�
������

� �����(���)       (� ≥ 1)
. (1-10) 

  The existing particle number in every short time 
interval �� (� ≠ 1)  or ��� (� = 1)  was generated 
successively using the probability described by Eq. (1-1).  
The generation of the time series for existing particle 
number was started from the initial particle number 
N0=100.  In order to avoid the possibility of the 
particle number increasing to infinity or dying out, the 
random immigration rate was chosen to be S = ��� 
when μ < 1  (subcritical case), considering the mean 
number of particles at � → ∞ is S/α(2), and S = 0 when � = 1 (critical case).  If S > 0 in a critical system, the 
mean particle number will increase with time and 
diverge eventually to infinity.  The power spectral 
density (PSD) in case of � = 1 is shown in Fig. 1, where the series was analyzed using the fast 
Fourier transformation technique (FFT) with the size of series of 67108864 points, and behaves 
clearly like 1 ��⁄  over seven decades of frequency f.  The PSD seems to deviate from the 1 ��⁄  line 

Fig. 1.  The PSD of the time series in case 
of � = 1.  The straight line gives the 1 ��⁄  
behavior. 
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in a low-frequency range lower than about 2x10-3.  Here, time is measured in unit of 1 ��⁄  (mean 
lifetime of a particle absorbed in the medium).  This frequency starting to deviate from the 1 ��⁄  
line means that the particle numbers at two different moments within 2.5x10-2 times of the lifetime 
of a particle correlate strongly with each other. 
Four examples of the PSD in 

case of μ < 1 are shown in Fig. 
2.  In all these cases the PSD 
converges on a constant value 
in a low-frequency range, while 
it holds the 1 ��⁄  behavior in 
the high-frequency range.  
The transition frequency from 
the 1 ��⁄  behavior to a 
constant value is around 0.2 in 
all the cases.  Considering the 
relation (1-4), the results in 
Figs. 2 show that the 
correlation between the 
particle numbers turns weak 
after a time interval of only 
about 10-3 times of the mean 

lifetimes by absorption at � < 1.   As described above, 
therefore, the particle 
numbers have strong 
correlation even after more 
than ten times longer of the 
mean lifetime at � = 1 
comparing with the cases at � < 1. 
It was noticed in the above 

analysis that the PSD of time series described by the number of particles existing in a medium 
behaves like 1 ��⁄  in a wide range of frequency due to strong correlations between the particle 
numbers at successive moments.  It is, however, expected that time intervals between two 
successive events occurring in the medium have comparatively weak correlations with each other 
and the PDS of a series formed by these intervals behaves like ���   (0 <  < 2) as explained in Fig. 
3 where detections of a particle are considered. 

Fig. 2.  The PSD of the time series for existing particle number for the 
cases that: (a)  � = 0.99; (b) � = 0.9 ; (c) � = 0.8 and (d) � = 0.1 .  The 
straight lines give the 1 ��⁄  behavior 

Fig. 3.  Chain of the branching processes.  
The square, circle and black spot represent 
a particle immigrating randomly, 
absorption and detection of a particle, 
respectively.  The paths (loci) of the 
particles are shown by full lines.  The 
existing particle number at time t1 and t2 
are 7 and 10, respectively. 

(a)

(d)(c)

(b)
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A detection may correlate with another detection through branching paths as the detections a, b 
and c in Fig. 3.  The detection d has no correlation with a, b and c, because it appears on a different 
branching chain from that of the detections a, b and c.  The length of the path between the 
detections has statistical correlation with the physical time interval.  For example, the time 
interval between a and b is approximately equivalent to that between b and c, but, owing to the fact 
that the path between b and c is longer than that between a and b, the correlation between b and c 
may be far weaker than that between a and b.  These considerations motivate an analysis of a 
series formed by time intervals between two successive detections of a particle. 
 
2 Detection probability of a particle 
  We consider the probability ��(!,�, �) that m detections have been recorded by a detector placed 
in the medium during the time interval (0, t) and n particles are found in the medium at time � > 0 
after we had k particles at � = 0(1,2).  It is rather complicated, even in the case of binary branching, 
to obtain this probability for every single value of m.  In the case of ! = 0, however, the probability ��(0,�, �) for binary branching is described closely by a similar form to Eq. (1-1) as(1) 
 ��(0,�, �) = 
��(�,���) ∙ "���,�
,

�

���
 (2-1) 

and, again as in Eq. (1-1), ��(�,���) and "�(�,�) are the contribution of the k particles in the medium 
at � = 0 and that of the particle immigrating into the medium during the time interval (0, t), 
respectively.  The contribution of particles in the medium at � = 0, ��(�,���), is described as 
 ����,���
 = 

(0, �, �)������,����	


���

	��
 ��(�,�) = ��,�, 

(2-2) 

where 
 
�0, �, �	 = � #�$�%       �� = 0	

(�����)	��
��
��������
���	       �� = 1	% ∙ 
(0, � − 1, �)       �� ≥ 2	. (2-3) 

Here 
 % = 1 − �����#� − $������, (2-4) 
and   
 #� = �� + &�

2�� ,     $� = �� − &�
2�� . (2-5) 

The parameters &�, #� and $� in Eqs. (2-3), (2-4) and (2-5) are given differently depending to the 
type of detector of particles.  We take two types of detector into consideration; one is the detector of 
absorption type in which a particle is absorbed by detection, and the other of non-absorption type in 
which the particle detection has no influence on the particle number.  We define hereλd, which is 
the detection rate of a particle, andλc, which is the capture rate of a particle in the medium in 
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addition to the absorption by the detector, and then the absorption rate �� and total rate �� are 
given by 
 �� = ' �� + ��             (absorption type)��            (non − absorption type)  and �� = �� + ��, (2-6) 
and then the multiplication rateμand the detection coefficientεof a particle are defined, 
respectively, as 
 � = ��

�� = ( ��
����
 (absorption type)
��
�� (non − absorption type)

. (2-7) 

and 
 ) = �


�� = ( �

����
 (absorption type)
�

�� (non − absorption type)

. (2-8) 

By using these parameters, &�, #� and $� are expressed, respectively, as 
 &� = * ��+(1 − �)� + 4)� (absorption type)��+(1 + ) + �)� − 4� (non − absorption type), (2-9) 
   
 #� = ⎩⎨⎧ 1

2� ,1 + � + +(1 − μ)� + 4εμ- (absorption type)
1

2� ,1 + ) + +(1 + ) + �)� − 4�- (non − absorption type)
 (2-10) 

and 
 $� = ⎩⎨⎧ 1

2� ,1 + � − +(1 − μ)� + 4εμ- (absorption type)
1

2� ,1 + ) − +(1 + ) + �)� − 4�- (non − absorption type)
. (2-11) 

  The other factor "�(�,�) in Eq. (2-1) is given by 
 "�(�,�) = ⎩⎪⎨⎪⎧ exp .�$� − 1	/� + /��� ln #� − $�#� − $������0        (� = 0)/��� + � − 1� ∙ % ∙ "���,���
                                     (� ≥ 1)

. (2-12) 

  Using Eqs. (1-1) and (2-1), the probability that we get some detections during the time interval (0, 
t) and n particles are found in the medium at � > 0 after we had k particles at � = 0 is described 
by 
 
 ��(!,�, �)

�

���
= ����, �	 − ���0,�, �	. (2-13) 

When the probability given by Eq. (2-13) is much smaller than ���0,�, �	, the probability recording 
more than two detections can be negligible and the following relation holds approximately: 
 ��(1,�, �) ≑ ����, �	 − ���0,�, �	. (2-14) 
 
3. Computer simulations 
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Whether a particle detection has occurred or not in 
a very short time interval was decided successively by 
using the Monte Carlo method with the probabilities 
described by Eqs. (1-1), (2-1) and (2-14), and another 
series (count series) formed by the time intervals 

between successive detections was 
obtained.  The random immigration rate 
S was chosen in a similar way to the case 
of time series for the existing particle 
number.  A part of the count series is 
shown in Fig. 4 in comparison with the 
series of particle number.  The count 
series has a much more intermittent 
property than the other. 
 
3.1  Absorption-type detector 
3.1.1  Case of � = 1 1�2 ) = 1 
  The FFT results for several sizes of 
series are shown in Fig. 5.  When the 
series size is shorter than 1048576, the 
PSD behaves like 1 �⁄  over five decades of 
frequency, here the frequency is related to 
detection counts and not to time.  The 
PSD for the series size over 2097152 begins 
to deviate from the 1 �⁄  line in a 
low-frequency range.  This deviation 
becomes more striking as the series size is 
longer and the PSD converges to a constant 

Fig. 6.  The PSD of the count series for the 
cases that � = 1, � = 0.5 and the series size of 
(a)  524288 and (b) 1048576, and that 
� = 1, � = 0.1 and the series size of (c) 6536 
and (d) 131072, respectively.  The straight 
lines give the 1 �⁄  behavior. 

(a)

(b)

Fig. 4.  (a) Time series for existing particle number for � = 1.  
(b) Count series for � = 1 and ε = 1. 

Fig. 5.  The PSD of the count series with an 
absorption-type detector for the case of � = 1 and � = 1.  
The series sizes are (a) 1048576, (b) 2097152 and (c) 
4194304, respectively.  The straight lines give the 1 �⁄  
behavior. 

(a)

(c)

(b)

(a)

(d)(c)

(b)
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value in a low-frequency range.  In all 
the case, the PSD converges to another 
constant value in a high-frequency 
range. 
3.1.2  Case of � = 1 1�2 ) < 1 
 The FFT results for ) = 0.5 and 0.1 
with � = 1  are shown in Fig. 6.  In 
case of ) = 0.5 , the PSD  with the 
series size smaller than 524288 
behaves like 1 �⁄ , but it begins to 
deviate from the 1 �⁄  line in a 
low-frequency range when the series 
size is 1048576, and this deviation 
becomes more striking for longer series 
sizes.  The deviation of the PSD from 
the 1 �⁄  behavior in a low-frequency 
range starts at a shorter series size in 
case of lower detection efficiency ε as shown in Fig. 6(c) and (d). 
3.1.3 Case of � < 1 1�2 ) = 1 
  The FFT results for � = 0.99 with ) = 1 are shown in Fig. 7.  When 
the series size is shorter than 131072, 
the PSD behaves like 1 �⁄  for more 
than three decades of frequency, but 
the PSD for the series size of 262144 
begins to deviate from the 1 �⁄  line 
in a low-frequency range and it 
comes to light for the series with 
sizes over 524288.  This deviation 
from the 1 �⁄  behavior becomes 
remarkable with decreasing the 
parameter � as can be seen in Fig. 8 
where the FFT results for � = 0.9 
and 0.8 with 3 = 1 are shown. 
  When � = 1, the PSD behaves like 
1 �⁄  for about five decades of 
frequency as can be seen in Fig. 5, 
but this frequency range with the 

Fig. 7.  The PSD of the count series with an absorption-type 
detector for the case of � = 0.99 and � = 1.  The series sizes 
are (a) 131072, (b) 262144 and (c) 524288, respectively.  The 
straight lines give the 1 �⁄  behavior. 

Fig. 8.  The PSD of the count series for the cases that � = 0.9, � = 1  
and the series size of (a)  16384 and (b) 32768, and that � = 0.8, � =
1 and the series size of (c) 4096 and (d) 8192, respectively.  The 
straight lines give the 1 �⁄  behavior. 

(a)

(c)

(b)

(a)

(d)(c)

(b)
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1 �⁄  behavior decreases to about three decades in case of � = 0.99  and becomes much more 
narrower down to only one decade in cases of � = 0.9 and 0.8. 
 
3.2  Non-absorption-type detector 
The PSD of count series of a 

non-absorption-type detector was 
estimated in a similar way to the 
cases of an absorption-type detector.  
3.2.1  Case of � = 1 1�2 ) = 1 
  The FFT results for two sizes of series 
are shown in Fig. 9.  The PSD behavior 
is very similar to the case of an 
absorption-type detector in Fig. 5, and it 
deviates from the 1 �⁄  line in a 
low-frequency range when the series size 
is over 4194304.  The PSD behaves like 
1 �⁄  for five decades or more of frequency 
which is slightly wider than the case of 
an absorption-type detector. 
3.2.2  Case of � = 1 1�2 ) < 1, and Case 
of � < 1 1�2 ) = 1 
  The PSD’s with a non-absorption-type 
detector for the cases of � = 1 and ) < 1 
and of � < 1 and ) = 1 are shown in Figs. 
10, 11 and 12.  These results are also 

Fig. 9.  The PSD of the count series with a non-absorption-type 
detector for the case of � = 1 and � = 1.  The series sizes are (a) 
2097152 and (b) 4194304, respectively.  The straight lines give 
the 1 �⁄  behavior. 

Fig. 10.  The PSD of the count series for the 
cases that � = 1, � = 0.5 with the series sizes 
of (a) 524288 and (b) 1048576, respectively, 
and that � = 1, � = 0.1 with the series sizes 
of (a) 131072 and (b) 262144, respectively.  
The straight lines give the 1 �⁄  behavior. 

Fig. 11.  The PSD of the count series with an 
non-absorption-type detector for the case of � = 0.99 and � = 1.  
The series sizes are (a) 131072, (b) 262144 and (c) 524288, 
respectively.  The straight lines give the 1 �⁄  behavior. 

(a) (b)

(a)

(c)

(b)

(a)

(d)(c)

(b)
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very similar to the cases with an 
absorption-type detector shown in 
Figs. 6, 7 and 8. 
3.2.3  Case of � = 1 1�2 ) > 1 

When the detector is of 
non-absorption type, the parameter ) larger than one is possible.  The 
PSD for � = 1 and ) = 2 is shown 
in Fig. 13.  In this case of ) = 2, 
each particle is detected twice, on 
average, before absorbed in the 
medium.  The spectrum is very 
similar to the case of ) = 1 shown 
in Fig. 9. 
 
4.  Results and discussions 
  The above simulations show that, 
up to the series size of 1048576 or more, the PSD behaves like 1 �⁄  for about five decades of 
frequency when � = 1 and ) = 1, but this behavior is found only for shorter series sizes when either � < 1 or ) < 1.  For longer series, in all cases, the PSD deviates from the 1 �⁄  behavior and 
converges to a constant value in a low-frequency range.  This deviation is sensitive to decreasing of � much more than to decreasing of ).  The 1 �⁄  behavior is found for the series size of 524288 in 
case of ) = 0.5 and is found for the size of 65538 or more even when ) = 0.1.  On the other hand, 
even in case of � = 0.99 the PSD deviates from the 1 �⁄  behavior at the series size of 262144 and, 
when � = 0.9, it deviates at a much more shorter size of 32768.  This 1 �⁄  behavior is gone out 
rapidly with decreasing �.  These results mean that a time interval between successive particle 
detections has considerably strong correlation with another time interval for long time when the 
parameters � = 1 and ) = 1 , and the correlation becomes weaker with decreasing of these 
parameters, in particular, of the parameter �. 

Fig. 12.  The PSD of the count series 
for the cases that � = 0.9, � = 1 with 
the series sizes of (a) 16384 and (b) 
32768, respectively, and that 
� = 0.8, � = 1 with the series sizes of 
(c) 4096 and (d) 8192, respectively.  
The straight lines give the 1 �⁄  
behavior. 

Fig. 13.  The PSD of the count series with a non-absorption-type 
detector for the case of � = 1 and � = 2.  The series sizes are (a) 
2097152 and (b) 4194304, respectively.  The straight lines give the 
1 �⁄  behavior. 

(a) (b)

(c) (d)

(a) (b)
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The detector type has no 
noticeable influence on the results. 
  As can be seen in Fig. 1, in case 
of � = 1 , the existing particle 
numbers have very strong 
correlations each other for long 
time compared to the case of μ < 1, 
and so a time interval between 
successive particle detections may 
have also considerable strong 
correlation with another time interval for long time.  When � = 1 but ) < 1, the correlation 
between time intervals of successive detections becomes weaker compared to the cases of ) = 1, 
because the time period between two successive detections is longer for ) < 1 compared to the case 
of ) = 1, which can be seen in Figs. 5 and 6 or Figs. 9 and 10 where the series sizes behaving like 
1 �⁄  are shorter in cases of ) < 1 than in case of ) = 1.  When � < 1, the correlation between the 
existing particle numbers is strong only for shorter time as can be seen in Fig. 2, which is the reason 
why the 1 �⁄  behavior breaks off at a very short series as shown in Figs. 7, 8, 11 and 12. 
  When ) > 1 with a non-absorption-type detector, the PDS behavior is similar to the cases of ) = 1 as shown in Fig. 13. 
  There are at least two limitations on performing the computer simulations.  The existing 
particle number should be avoid to be zero, because no branching will arise from no particle.  A 
very large number of particles takes unreasonably long time to process on a computer, and the 
number of particles should be set a limit.  In the present simulations, the upper limit of the 
particle number (maximum particle number) was set to 1000.  The effect of a limitation on the 
particle number to the PDS was examined, the results of which is shown in Figs. 14 and 15 where 
the count series were generated under the same conditions of the parameters � and ) as in Fig. 9 
but the upper limits of particle number were set to 200, 400 and 700.  As can be seen in Fig.15, the 

Fig. 14.  The PSD of the count series 
with a non-absorption-type detector for 
the case of � = 1 and � = 1.  The 
particle number limits are 200 in (a) 
and (b), 400 in (c) and (d), and 700 in 
(e) and (f), respectively.  The series 
sizes are (a) 32768, (b) 65536, (c) 
131072, (d) 262144, (e) 524288 and (f) 
1048576, respectively.  The straight 
lines give the 1 �⁄  behavior. 

(a)

(f)(e)

(d)(c)

(b)
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maximum particle number is so sensitive to the 
frequency range with the 1 �⁄  behavior of PDS, 
where this frequency range increase steadily 
with the maximum particle number.  This 
figure shows clearly, therefore, that the 
frequency range with the 1 �⁄  behavior of PDS 
can be extended more when the simulation is 
performed for the maximum particle number 
larger than 1000.  It is not sure that this trend 
in Fig.15 continues on and on endlessly but, if 
the maximum particle number is limited up to 
2000, the PDS may behave like 1 �⁄  for about 
eight decades of frequency. 
  In order to see the above expectation, 
a count series for the maximum particle 
number set to 2000 was generated for 
the case of � = 1 and ) = 1  with a 
non-absorption-type detector, the results 
of which are shown in Fig. 16.  It was 
difficult to generate a fully long series 
because of a limited computing time, 
and so the statistical precision of the 
FFT results in Fig. 16 is insufficient.  
But it can be said still that the PSD 
behaves like 1 �⁄  over seven decades of 
frequency.  From the discussions of a 
limitation of the particle number, the 
1 �⁄  behavior of the PSD over a much 
more wide frequency range may be 
expected if a higher-speed computer is 
used for simulations. 
  In all of the results of the present 
simulations, the PDS converges to a constant value in a high-frequency range.  The time interval 
between two successive detections is given digitally in the present work, which may causes interval 
fluctuation in one time unit, which can be the reason of the behavior of the PDS in a high-frequency 
range. 
 
5. Conclusion 

Fig. 15.  Relation of the longest series size with 
the 1 �⁄  behavior and the maximum particle 
number. 

(a) (b)

(c)

Fig. 16.  The PSD of the count series with a 
non-absorption-type detector for the case of � = 1 and � = 1.  
The maximum particle number is set to 2000.  The series size 
are (a) 16777216, (b) 33554432 and (c) 67108864.  The 
straight lines give the 1 �⁄  behavior. 
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  The branching process model has been applied to discuss a 1 �⁄  problem, and the 1 �⁄  behavior of 
the PSD of a series has been demonstrated in a wide range of frequency, as wide as seven decades of 
frequency when the absorption rate is equivalent to the branching rate, i.e., μ=1 (critical case).  
This frequency range is expected to be extended up to eight decades or more by simulating on a 
higher-speed computer. 
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