
EasyChair Preprint
№ 3160

The abc Conjecture: The Proof of c <

rad^2(abc)

Abdelmajid Ben Hadj Salem

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 13, 2020



The abc Conjecture: The Proof of c < rad2(abc)

Abdelmajid Ben Hadj Salem1

1 Residence Bousten 8, Bloc B, 1181 Soukra Er-Raoudha
Tunisia

e-mail: abenhadjsalem@gmail.com

Abstract: In this note, I present a very elementary proof of the conjecture c < rad2(abc) that
constitutes the key to resolve the abc conjecture. The method concerns the comparison of the
number of primes of c and rad2(abc) for large a, b, c using the prime counting function π(x) giv-
ing the number of primes ≤ x. Some numerical examples are given.
Keywords: Elementary number theory, The prime counting function, Real functions of one vari-
able.
2010 Mathematics Subject Classification: 11AXX, 26AXX.

1 Introduction

Let a positive integer a =
∏

i a
αi
i , ai prime integers and αi ≥ 1 positive integers. We call radical

of a the integer
∏

i ai noted by rad(a). Then a is written as :

a =
∏
i

aαi
i = rad(a).

∏
i

aαi−1
i (1)

We note:
µa =

∏
i

aαi−1
i =⇒ a = µa.rad(a) (2)

The abc conjecture was proposed independently in 1985 by David Masser of the University of
Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris 6) [1]. It describes the
distribution of the prime factors of two integers with those of its sum. The definition of the abc
conjecture is given below:

Conjecture 1.1. Let a, b, c positive integers relatively prime with c = a+ b, then for each ε > 0,
there exists a constant K(ε) such that :

c < K(ε).rad1+ε(abc), K(ε) depending only of ε. (3)

The idea to try to write a paper about this conjecture was born after the publication of an
article in Quanta magazine, in November 2018, about the remarks of professors Peter Scholze of
the University of Bonn and Jakob Stix of Goethe University Frankfurt concerning the proof of
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Shinichi Mochizuki [2]. The difficulty to find a proof of the abc conjecture is due to the incom-
prehensibility how the prime factors are organized in c giving a, b with c = a+ b.

We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 [1]. A conjecture was proposed that

c < rad2(abc) [3]. It is the key to resolve the abc conjecture. In this note, I present for the case
c = a + 1 an idea to obtain the proof of c < rad2(ac): I will compare the number of primes
respectively ≤ c and ≤ rad2(ac). The prime counting function noted by π(x) is defined for x
large as [4]:

π(x) =

∫ x

2

dt

Logt
(4)

We will study in details the case c = a + 1, for the second case c = a + b, the proof does not
change without describing it.

The paper is organized as follows: in the second section, we present some preliminaries and
formulas for counting the number of prime numbers less one integer. The details of the proof of
the conjecture c < rad2(ac) are given in section three. In sections four and five, we present some
numerical examples.

2 Preliminaries and notations

Let a, c positive integers relatively prime with c = a+ 1, a ≥ 2. We note:

a = µa.rad(a) = µa.
i=Na∏
i=1

ai, Na ≥ 2

The number of primes ≤ a isπ(a) = I = Na + da

c = µc.rad(c) = µc.
k=Nc∏
k=1

ck, Nc ≥ 2

The number of primes ≤ c is π(c) = K = Nc + dc

R = rad(ac) =⇒ NR = Na +Nc

The number of primes ≤ R is π(R) = L = NR + dR

R2 = rad2(ac) =⇒ NR2 = Na +Nc

The number of primes ≤ R2 is π(R2) = M = Na +Nc + dR2

∆ = π(R2)− π(c) (5)

In our study, we suppose that c > R and a, c are large positive integers. The expression of ∆

gives:

∆ = π(R2)− π(c) = M −K = (Na +Nc + dR2)− (Nc + dc) =⇒
∆ = Na + dR2 − dc = dR2 +Na − dc (6)

As c > a and c, a are not prime integers, then π(c) = π(a), we obtain:

∆ = dR2 +Na − dc = dR2 +Na − (π(c)−Nc) = dR2 +Nc +Na − π(c) (7)
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but π(c) = π(a), the last equation can be written as:

∆ = dR2 +Na − dc = dR2 +Nc +Na − π(a) = dR2 +Nc +Na −Npa − da
=⇒ ∆ = dR2 +Nc − da = dR2 +Na − dc (8)

Then we deduce an invariant:
Na − dc = Nc − da (9)

As c > R =⇒ π(c) > π(R) =⇒ Nc + dc > Na +Nc + dR =⇒ −dR > Na − dc. Then:

Na < dc (10)

and the formulas (9) can written as:

dc −Na = da −Nc > 0 (11)

and we write ∆ as :
∆ = dR2 − (dc −Na) = dR2 − (da −Nc) (12)

Let us take the example:

1 + 2.37 = 54.7 =⇒ 1 + 4374 = 4375 (13)

We find from c = a+ 1:

π(a) = π(4375) = 597, Na = 2, da = 595 =⇒ Na � da

π(c) = π(4374) = 597, Nc = 2, dc = 595 =⇒ Nc � dc

Nc ≈ Na =⇒ dc ≈ da (14)

R = 2.3.5.7 = 210 =⇒ π(210) = 46 =⇒ dR = 42 =⇒ Na, Nc � dR

R2 = (2.3.5.7)2 = 2102 = 44100 =⇒ π(R2) = π(44100) = 4412 > 597 =⇒
dR2 = 4412− 2− 2 = 4408 =⇒ da � dR2 ; dc � dR2 ; dR � dR2 =⇒

∆ = π(R2)− π(c) = 4412− 597 = 3815 > 0 =⇒ c < R2, π(c)� π(R2)

(R = 210) < (c = 4375); (µc = 53 = 125) > (rad(c) = 5.7 = 35)

=⇒ (µa = 36 = 729) > (rad(a) = 2.3 = 6)

And the conjecture c < R2 is true. We give below the proof of c < R2.

3 The Proof of c < R2

Proof. : We will not use the formulas developed above but an analytic method. We will proceed
by induction on n with cn = an + 1, an, cn not prime numbers but relatively comprime, so that
cn > Rn where Rn = rad(ancn).
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3.1 Case k = 1, c1 = a1 + 1

It gives a1 = 8, c1 = 9 =⇒ rad(a1) = 2, rad(c1) = 3 =⇒ R1 = rad(a1c1) = 6 < c1 =⇒ R2
1 =

rad2(a1c1) = 36 and π(R2
1) = π(36) = 11 prime numbers={2,3,5,7,11,13,17,19,23,29,31},

π(c1) = π(9) = 4 prime numbers={2,3,5,7}. Then we obtain ∆1 = π(R2
1) − π(c1) = 11− 4 =

7 > 0 and the conjecture holds.

Assume that the conjecture c < R2 has already been found to hold for k=2,3,. . . ,n. Then we
shall show that the conjecture also holds for k = n+ 1 and hence by induction for all integers.

3.2 Case k = n, cn = an + 1

We assume that an or cn is not prime with cn > Rn, and the conjecture holds for k = n =⇒
π(R2

n) > π(cn), with π(cn)� π(R2
n). Then cn < R2

n. Now we consider the case k = n+ 1.

3.3 Case k = n+ 1

Let an+1 = cn, we obtain cn+1 = an+1 + 1. We suppose that cn+1 is not a prime and Rn+1 =

rad(cn+1)rad(cn) < cn+1, if not, the conjecture c < R2 holds. Then we take the first cn = cn + r

so that cn, cn+1 = cn + 1 verifying cn or cn+1 not a prime and cn+1 > Rn+1. Let

∆n+1 = π(R2
n+1)− π(cn+1) (15)

As an, cn, cn+1 are not prime, then π(cn+1) = π(cn) and we write equation (15) as:

∆n+1 = π(R2
n+1)− π(R2

n) + π(R2
n)− π(cn) (16)

Using the case k = n, we know that π(R2
n)− π(cn) > 0, then:

- If π(R2
n+1) − π(R2

n) > 0 =⇒ ∆n+1 > 0 =⇒ cn+1 < R2
n+1. As π(cn) � π(R2

n) =⇒
π(cn) � (π(R2

n) + (π(R2
n+1) − π(R2

n))) =⇒ π(cn) � π(R2
n+1). But π(cn) = π(cn+1) =⇒

π(cn+1)� π(R2
n+1). Then conjecture holds for the case k = n+ 1.

- If π(R2
n+1)−π(R2

n) < 0 =⇒ R2
n+1 < R2

n =⇒ Rn+1 < Rn. So, we consider in the following
that Rn+1 < Rn. We will use an expression of the function π(X) giving in [4] as:

Theorem 3.1. There exists a constant l > 0 so that:

π(X) =

∫ X

2

du

Logu
+O(Xe−l(LogX)1/2) (17)

It follows that, for X > 4:

π(X) =
X

LogX
+O

(
X

Log2X

)
(18)
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where O(f) designs Landau O notation. We write the equation (17) as:

π(X) =

∫ X

2

du

Logu
+ λ(X), λ(X) = O(Xe−l(LogX)1/2) (19)

As an, cn, cn+1 are not prime, it follows that π(cn+1) = π(cn), it gives:

∆n+1 = π(R2
n+1)− π(cn) =

∫ R2
n+1

2

du

Logu
−
∫ cn

2

du

Logu
+ λ(R2

n+1)− λ(cn) (20)

- Case (i): we suppose that R2
n+1 > Rn, we obtain:

∆n+1 = π(R2
n+1)− π(cn) =

∫ R2
n+1

Rn

du

Logu
−
∫ cn

Rn

du

Logu
+ λ(R2

n+1)− λ(cn) (21)

Using the mean value theorem, we obtain:∫ R2
n+1

Rn

du

Logu
= (R2

n+1 −Rn).
1

Logθ
θ ∈]Rn, R

2
n+1[

Then we write that 1/Logθ = (1 + µ).1/LogR2
n+1 with µ > 1. So we obtain:

∆n+1 =
R2
n+1

LogR2
n+1

(
1− Rn

R2
n+1

)
(1 + µ)−

∫ cn

Rn

du

Logu
+ λ(R2

n+1)− λ(cn) (22)

Using the same theorem for the second integral, we obtain :

∆n+1 >
R2
n+1

LogR2
n+1

(
1− Rn

R2
n+1

)
(1 + µ)− cn

Logcn

(
1− Rn

cn

)
+λ(R2

n+1)− λ(cn)

The last equation can written as:

∆n+1 >
R2
n

LogR2
n

.
LogR2

n

LogR2
n+1

.
R2
n+1

R2
n

(
1− Rn

R2
n+1

)
(1 + µ)− cn

Logcn

(
1− Rn

cn

)
+λ(R2

n+1)− λ(cn) (23)

As Rn > Rn+1, we can write:

LogR2
n

LogR2
n+1

> 1 =⇒ LogR2
n

LogR2
n+1

= 1 + ε, , ε > 0

R2
n+1

R2
n

(
1− Rn

R2
n+1

)
=
R2
n+1

R2
n

− 1

Rn

> 0 =⇒

R2
n+1

R2
n

− 1

Rn

− 1 =
−(R2

n −R2
n+1)−Rn

R2
n

< 0 =⇒ 0 <
R2
n+1

R2
n

− 1

Rn

< 1

=⇒
R2
n+1

R2
n

(
1− Rn

R2
n+1

)
= 1− ε′, ε′ > 0 (24)
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Then the equation (23) becomes:

∆n+1 >
R2
n

LogR2
n

− cn
Logcn

+
Rn

Logcn
+

R2
n

LogR2
n

(µ+ ε− ε′)

+λ(R2
n+1)− λ(cn) (25)

Using the equation (18), we obtain:

∆n+1 > π(R2
n)− π(cn) +

Rn

Logcn
+

R2
n

LogR2
n

(µ+ ε− ε′)

−O
(

R2
n

Log2R2
n

)
+O

(
cn

Log2cn

)
+ λ(R2

n+1)− λ(cn) (26)

As π(R2
n)− π(cn) > 0 and π(cn)� π(R2

n) and from the equation above we can conclude, since
cn, Rn, Rn+1 are large integers, that :

∆n+1 = π(R2
n+1)− π(cn+1) > 0 =⇒ R2

n+1 ≥ cn+1 =⇒ R2
n+1 > cn+1 (27)

and π(cn+1)� π(R2
n+1) (28)

Hence, the conjecture holds for k = n+ 1 in the case R2
n+1 > Rn.

- Case (ii) :R2
n+1 < Rn

Let A be the statement ” If cn+1 < R2
n+1 =⇒ Rn < R2

n+1”. We have R2
n+1 > cn+1 > cn >

Rn, then A is true. We consider its negation, we find: ” If Rn > R2
n+1 =⇒ cn+1 > R2

n+1. Then
the case R2

n+1 < Rn is false.

Then the conjecture holds for k = n+ 1.

In our proof, we have used the parameters cn, Rn, cn+1, Rn+1, then for the case c = a+ b, the
proof is unchanged. So we can announce the important theorem:

Theorem 3.2. Let a, b, c positive integers relatively prime with c = a+ b, then:

c < rad2(abc) =⇒ Logc

Log(rad(abc))
< 2 (29)

This result, I think is the key to obtain a proof of the veracity of the abc conjecture. In the two
following sections, we are going to verify some numerical examples.

4 Examples : Case c = a + 1

4.1 Example 1

The example is given by:
1 + 5× 127× (2× 3× 7)3 = 196 (30)

a = 5 × 127 × (2 × 3 × 7)3 = 47 045 880 ⇒ µa = (2 × 3 × 7)2 = 1764 and rad(a) =

2× 3× 5× 7× 127, in this example, µa < rad(a).
c = 196 = 47 045 881⇒ rad(c) = 19. Then rad(ac) = 2× 3× 5× 7× 19× 127 = 506 730.

We have c > rad(ac) but rad2(ac) = 506 7302 = 256 775 292 900 > c = 47 045 881 >.
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4.2 Example 2

We give here the example 2 from https : //nitaj.users.lmno.cnrs.fr:

37 × 75 × 135 × 17× 1831 + 1 = 230 × 52 × 127× 353 (31)

a = 37×75×135×17×1831 = 424 808 316 456 140 799⇒ rad(a) = 3×7×13×17×1831 =

8497671 =⇒ µa > rad(a),
b = 1, rad(c) = 2× 5× 127× 353 Then rad(ac) = 849767× 448310 = 3 809 590 886 010 < c.
rad2(ac) = 14 512 982 718 770 456 813 720 100 > c, then c ≤ 2rad2(ac).

5 Examples : Case c = a + b

5.1 Example 1

We give here the example of Eric Reyssat [1], it is given by:

310 × 109 + 2 = 235 = 6436343 (32)

a = 310.109⇒ µa = 39 = 19683 and rad(a) = 3× 109,
b = 2⇒ µb = 1 and rad(b) = 2,
c = 235 = 6436343⇒ rad(c) = 23. Then rad(abc) = 2× 3× 109× 23 = 15042.
rad2(abc) = 226 261 764 > c.

5.2 Example 2

The example of Nitaj about the abc conjecture [1] is:

a = 1116.132.79 = 613 474 843 408 551 921 511⇒ rad(a) = 11.13.79 (33)

b = 72.412.3113 = 2 477 678 547 239⇒ rad(b) = 7.41.311 (34)

c = 2.33.523.953 = 613 474 845 886 230 468 750⇒ rad(c) = 2.3.5.953 (35)

rad(abc) = 2.3.5.7.11.13.41.79.311.953 = 28 828 335 646 110

rad2(abc) = 831 072 936 124 776 471 158 132 100 >

c = 613 474 845 886 230 468 750
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5.3 Example 3

It is of Ralf Bonse about the abc conjecture [3] :

25434.182587.2802983.85813163 + 215.377.11.173 = 556.245983 (36)

a = 25434.182587.2802983.85813163

b = 215.377.11.173

c = 556.245983 = 3.41369987832962351603782735764498e+ 44

rad(abc) = 2.3.5.11.173.2543.182587.245983.2802983.85813163

rad(abc) = 1.5683959920004546031461002610848e+ 33

rad2(abc) = 2.4598659877230900595045886864951e+ 66 > c
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