
EasyChair Preprint
№ 11001

Computer Architecture and Algorithms for High
Performance Computing Through Parallel and
Distributed Processing

Venkata Subba Reddy Poli

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 1, 2023

 5

Computer Architecture and Algorithms for
High Performance Computing through Pa-

rallel and Distributed Processing
P. Venkata Subba Reddy

Abstract—There is a very high need of High Performance Computing (HPC) in Many applications like space science to Artificial

Intelligence. HPC shall be achieved through Parallel and Distributed Computing. In this paper, Parallel and Distributed

algorithms are discussed based on Parallel and Distributed Processors to achieve HPC. The Programming concepts like

threads, fork, sockets and par do are discussed with some simple examples for HPC.

 Index Terms— High Performance Computing, Parallel and Distributed Algorithms, Computer Architecture, Computer

Programming

——————————  ——————————

1 INTRODUCTION

 Computer Architecture and Programming play an im-
portant role for High Performance computing (HPC) in
large applications Space science to Artificial Intelligence
[]. The Algorithms are problem solving procedures and
later these algorithms transform in to particular Pro-
gramming language for HPC. There is need to study
algorithms for High Performance Computing. These
Algorithms are to be designed to computer in reasonable
time to solve large problems like wather forecasting, Tsu-
nami, Remote Sensing, National calamities, Defense,
Mineral exploration, Finite-element, Cloud Computing,
and Expert Systems ect. The Algorithms are Non-
Recursive Algorithms, Recursive Algorithms, Parallel
Algorithms and Distributed Algorithms.

The Algorithms must be supported the Computer Archi-
tecture. The Computer Architecture is characterized with
Flynn’s[2] Classification SISD, SIMD, MIMD, and MISD.
Most of the Computer Architectures are supported with
SIMD (Single Instruction Multiple Data Streams). The
class of Computer Architecture is VLSI Processor, Multi-
processor, Vector Processor and Multiple Processor[1,3].

2 ALGORITHMS

 There are Non-Recursive Algorithms, Recursive Algo-
rithms, Parallel Algorithms and Distributed Algo-
rithms[5,10].
In the following Algorithms, Computer Programming
and Architectures are discussed

2.1 Non-Recursive Algorithms
Non-Recursive Algorithms are systematically applied to
the problems by analyzing the efficiency.
Consider the algorithm of finding maximum element in
the array A ([0 .. n-1])
maxval  A[0]
for i0 to n-1 do

 if A[i] > maxval
 axval  A[i]
return maxval

The problem will be analyzed as

C(n) is number of computations. Where n is input size.
The number of times of operations in execution

 n-1
C(n)= ∑ 1 = n=1 Є Ө(n)
 i=1

2.2 Recursive Algorithms

 The recursive algorithm is binary expansion whose num-
ber of executions is multiplication.
For instance n! = n*n-1*n-2*…*1
Consider the algorithm of finding n!

If n=0 return 1
Else return F(n-1)*n

The number of multiplications M(n) needs to compute
M(n)=M(n-1) +1 for n>0
M(0)=0

2.3 Parallel Algorithms
Parallel Algorithms are designed to apply on problem to
compute parallel whose number of executions is inde-
pendent.
For instance parallel sum of odd and even number up to
A[n].
Consider the algorithm to find parallel sum of odd and
even numbers unto A[n].
odsum0, evensun  0
for i0 to n-1 stem 2 do
 oddsum oddsum +A[i}]

6

return oddsum
for i1 to n-1 stem 2 do
 evensum evensum +A[i}]
return evensum

Consider the algorithm to find parallel matrix multiplica-
tion of A[n, n] and B[n,n].

for i0 to n-1 do in parallel
 for j0 to n-1 do in parallel
 C[I,j]0
 for k0 to n-1 do in parallel
 C[I,j]  C[I,j] + A[I,k] * B[k,j]
return C

2.4 Distributed Algorithms
Distributed Algorithms are designed to apply on prob-
lems to compute on Distributed Systems whose execu-
tions are independent and distributed .
Consider the algorithm to compute two transactions
The algorithm of the problems is designed to execute on
Distributed Systems.

 if (fork())
 {
 #Transaction1;
}
 else
 {
 #Transaction2
}

3 PARALLEL AND DISTRIBUTED ARCHITECTURE

AND PROGRAMMING

Parallel and distributed Computer Architecture of pro-
cessors is defined through Flynn’s classification (SISD,
SIMD, MIMD, MISD)

Parallel and Distributed Computer Systems

There are four minimum number of Architecture are
VLSI Processor, Multiprocessor, Multiple Processor(Multi
Computer) and Vector Processors . These Architectures
are discussed in the following

3.1 VLSI Processor
VLSI Chip has Computer components such as Processor
arrays (Processing Elements), Memory array and large
scale switching networks. Communicate the PEs for im-
plementing Parallel Algorithms with VLSI Chip.

4x4 mesh Processing Elements of VLSI Processor

Consider the Parallel algorithm for odd and even sum of
n elements for VLSI Processor.
Compute oddsum, evensum in parallel
One of the PEs set to oddsum:
The Perl program for above parallel algorithm using
threads is given by
The “use thread” creates one or more threads.

 use threads;
 $thr1= threads->new(\&ascending);
 $thr2= threads->new(\&decending);
 ;
 sub ascending {
 my $num=0;
do { $num=$num+1;
 print " $num\n";
 }
 while ($num<10)
 }
sub decending {
 my $num=10;
do { print " $num\n";
$num=$num-1;
 }
 while ($num>0)
}
$thr1-> join;
$thr2->join;

3.2 Multi Processor
 Multiprocessor Computer Have been modeled as n Pro-
cessor and Parallel Random Access Machine (PRAM)
with shared memory. The Parallel Algorithms will be
implemented with PRAM.

Multiprocessor System

Consider the Parallel Algorithm for computation for Mul-
tiprocessing System
 oddsum0

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Parallel and

Distributed

Computers

Multiproces-

sors

MuliCompu-

ters

Bus Switched Bus
Switched

Tightly

Couple

d

Loosely

Couple

d

Shared

Memory

P1

P

P2

P

Pn

P

 7

for i0 to n-1 stem 2 do
 oddsum oddsum +A[i}]
return oddsum

one of the PEs set to evensum:
evensun  0
for i1 to n-1 stem 2 do
 evensum evensum +A[i}]
return oddsum

The Perl Program for above problem using fork for Paral-
lel Processing

3.3 Multi Computer System
Multi Computer involves sequence of routers and chan-
nels for as number of Computer Systems with Message
Passing Interconnection Network. The Parallel Algo-
rithms will be implemented with this Network

.

Multi Computer System

Multi computer System/ Distributed system

Consider the Parallel/Distributed algorithms in Multi
Computer/distributed System. These algorithms will be
computed in two ways Client/Server and Remote Proce-
dural Calls

Remote Procedural Computation

The Client request the Data from the Server and the Serv-
er sends the Data from the Server buffer.
The Perl Program gets Time from Server.

Remote Procedural Computation

#Perl Client Program
#!/usr/bin/perl
use IO::Socket;
$socket = new IO::Socket::INET (
 PeerAddr => '127.0.0.1',
 PeerPort => 7008,
 Proto => 'tcp',

)
or die "Couldn't connect to Server\n";
 $socket->recv($recv_data,1024);
 if($recv_data){
localtime()=$recv_data;
 print "Recieved :$recv_data\n";
 }

#Perl Server Program
#!/usr/bin/perl
use IO::Socket;
$| = 1;
$socket = new IO::Socket::INET (
 LocalHost => '127.0.0.1',
 LocalPort => '7008',
 Proto => 'tcp',
 Listen => 5,
 Reuse => 1
);
die "Coudn't open socket" unless $socket;
print "\nTCPServer Waiting for client on port 7008";
while(1)
{
 my($new_sock,$buf);
 $buf=sum();
 $client_socket = "";
 $client_socket = $socket->accept();

 $peer_address = $client_socket->peerhost();
 $peer_port = $client_socket->peerport();

 print "\n I got a connection from ($peer_address
, $peer_port) ";
 $client_socket->send($buf);
 close $client_socket;
sub sum() { return 2+3;}
}

The Host Machine sends the Data to the Target Machines
and Target Machine processes the Data and send result
Data to the Host Machines.
The Perl program for distributed algorithm may imple-
ment using socket & fork.

3.4 Vector Processors
Super Computers are model with Vector Processor. Super
Computers are specified by 5-tuples

M = <N, C, I, M, R>
Where
N=number of processors
C= Set of instructions
I is set of instructions for parallel execution
M= Set of Processors
R= Set of routing functions

 Message-Passing

 Interconnection Network

P

M

P

M

P

M

P

M

P

M

P

M

M P

M P

P M

P M

 CCC Request

Host

Kernel

Reply

 Target

Kernel

8

 Scalar Processor Vector Processor

 I/O (User)

The Architecture of Vector Supercomputer

 Parallel Algorithms are designed to compute big prob-
lems like Weather forecasting, Remote sensing, Mineral
exploration, Oceanography ect in parallel using Super
Computers.
 Consider the algorithm to find Parallel Matrix Multipli-
cation A[nxn] and B[nxn], where n is very large.
The Perl program for above parallel algorithm for matix
multiplication is given by

for i0 to n-1 do in parallel
for j0 to n-1 do in parallel

 P[i,j] set to C[i,j]0
 for k0 to n-1 do in parallel
A[I,k] and B[k,k]broadcast to P[i,j]
 C[I,j]  C[I,j] + A[I,k] * B[k,j]
return C
The Perl program for above parallel programming for
matix multiplication using par do in FORTRAN is given
by

par do 300 i = 1, n

 par do 200 j = 1, n

 par do 100 k = 1, n

 a(i,k) = a(i,k) + b(i,j) * c(j,k)

 100 continue

 200 continue

 300 continue

4 CONCLUSION

High Performance Computing is required when large
computations of the problems. HPC shall be performed
through the Parallel and distributed Algorithms. The Pa-
rallel and Distributed are discussed based on Computer
Architecture. The Class of Algorithms and Class of Com-
puter Architecture are discussed. The Programming con-
cepts like threads, fork, sockets and Par Do are discussed
for HPC. Some simple examples are discussed for HPC.
The examples shall be extending to large problems like

Grid Computing and Cloud Computing. Usually Fotran
is used for HPC. The Perl and Java Programming are laso
usefull for HPC[11].

ACKNOWLEDGMENT

The author wishes to thank B.Tech., M.Tech., and Ph.D
Students for helping me.

REFERENCES

[1] Kai Hwang, Advanced Computer Architecture, McGraw-Hill,

New Delhi, 1993.

[2] M. J. Flynn, “Some Computer Organizations and Theire Effec-

tiveness”, IEEE Transactions on Computers, vol.29, n0.9,

pp.948-960, 1972.

[3] K. Hwang, Advanced Parallel Processing and SuperCompuer

Architecture”, Proceedings of IEEE, vol.75, 1987.

[4] K. Hwang anf F. A Briggs, Computer Architecture and Parallel

Processing, McGraw-Hill, New Delhi, 1992.

[5] Aho, Hopecroft and Ulman, Design and Analysis of Computer

Algorithms, pearson, 2002.

[6] Martin Brown, Perl The Complete Reference, Tata Mc Graw-

Hill, New Delhi,2001.

[7] John C. Knight, The current status of super computers Original

Research Article Computers & Structures, Volume 10, Issues 1–2,

Pp.401-409, April1878.

[8] Horst D Simon Erich Strohmaier, Jack J Dongarra, Hans W

Meuer, The marketplace of high-performance computing

Original Research ArticleParallel Computing, Volume 25, Issues

13–14, pp. 1517-1544, Decmber 1999.

[9] Guillermo L. Taboada, Sabela Ramos, Roberto R. Expósito, Juan

Touriño, Ramón Doallo ,Java in the High-Performance Com-

puting arena: Research, practice and experience Original Re-

search ArticleScience of Computer Programming July 2011.

[10] N. Sim, D. Konovalov, D. Coomans High-Performance GRID

Computing in ChemoinformaticsComprehensive Chemometrics,

pp. 507-539, 2009.

[11] P. Venkata Subba Reddy, “Object-Oriented Software Engineer-

ing through Java and Perl”, CiiT International Journal of Soft-

ware Engineering and Technology, July 2010.

Dr. P. Venkata Subba Reddy was Professor and
Head, Department of Computer Science and Engineering, MeRITS,
Udayagiri, India during 2006-07. He is currently Associate Profes-
sor in Department of Computer science and Engineering, College
of Engineering, Sri Venkateswara University, Tirpathi, India work-
ing since 1992. He did Ph.D in Artificial Intelligence, 1992). Sri
Venkateswara University, Tirpathi, India. . He did Post Doctor-
al/Visiting fellowship in Fuzzy Algorithms under Prof. V. Rajara-
man, SERC,IISC/JNCASR, Bangalore, India. He is actively en-
gaged in Teaching and Research work to B.Tech., M.Tech., and
Ph.D students. He is actively in doing research in the areas of
fuzzy systems, database systems, Software Engineering , Expert
Systems and Natural language processing. He published papers in
reputed National and International journals. He is an Editor for
JCSE

Mass

Storage

Host

Comput-

er

Main Memory

(Pro-

gram&Data

Scalar

control

unit

Vector

control

unit

Vector

regis-

ters

Vector func-

tional pipelines

Vector func-

tional pipelines

Scalar

function-

al

pipelines

