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Abstract: System identification is a pivotal field within control engineering, providing a strategic
approach to control challenges when direct modeling of systems proves unfeasible. Using input
and output data from the system under analysis, it becomes feasible to construct a mathematical
model that captures its dynamics without fully understanding its internal mechanics. Among
the various identification methods, the Multivariable Output Error State Space (MOESP)
algorithm is distinguished by its straightforwardness, importance, and determinism, enabling
the identification of systems represented by state equations. This study explores the steps of
this algorithm and its application and validation in dynamic systems. Furthermore, the influence
of estimated order, a free algorithm variable, is investigated through graphical and mathematical
analysis. We used two examples of dynamic MIMO systems to validate the identification strategy
explored in this work. A numerical simulation of a linear system represented the first system.
The other constitutes a real nonlinear system. The results presented model evaluation metrics
that show the efficacy of the methodology under study.
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1. INTRODUCTION

Creating mathematical models of a system’s dynamics
plays a vital role in performance optimization, predict-
ing future behaviors of the system, and designing control
techniques efficiently. Hence, system identification is es-
sential because one can derive the models directly from
experimental data. These systems reflect complexities that
cut across large forbearing domains: industrial processes,
biological frameworks, and environmental interactions, as
discussed in Zhou et al. (2023).

Through these models, the internal dynamics of a system
may be understood, along with the design and implemen-
tation of controllers that will realize optimal functionality.
However, since many systems are highly complex and
nonlinear, system identification is often challenging and
requires robust methodologies and techniques to extract
useful information from the available data.

The state-space approach stands out among other sys-
tem representations due to its better adaptation to non-
linearity problems and simple, flexible, and matrix-based
representation. This characteristic allows for the use of al-
gebraic frameworks in the process of system identification.

In this context, the Multivariable Output Error State-
Space (MOESP) algorithm is particularly notable as a
system identification methodology for its efficacy in repre-
senting systems via state-space equations De Moor et al.
(1997). This algorithm provides a robust and efficient
parameter estimation methodology that facilitates precise
characterization of the system’s dynamics. Consequently,
by delving into and understanding the mechanics of the
MOESP algorithm, it becomes feasible to broaden the

range of systems that can be effectively modeled and
controlled.

As discussed in Bauer (2001), selecting the correct system
order is critical in system identification. An overly high
system order can lead to overfitting, where the model
becomes too complex and captures noise rather than the
underlying system dynamics—on the other hand, selecting
a system order that is too low results in underfitting,
where the model fails to capture essential dynamics, lead-
ing to inaccurate predictions. Therefore, balancing model
complexity and accuracy is vital, and information criteria
such as AIC and BIC are commonly utilized to guide the
selection of an appropriate system order.

In this study, we explore the steps of this MOESP al-
gorithm and the influence of estimated order through
graphical and mathematical analysis. Two examples of
dynamic MIMO systems were used to validate the identifi-
cation strategy explored in this work. We used a numerical
simulation of a linear system as the first system, and the
second one constitutes a real nonlinear system. The results
presented model evaluation metrics that show the efficacy
of the methodology under study.

The structure of this paper is as follows. Section 2 explores
the theories used in applying MOESP to the data. Section
3 details the algorithm’s operation and assimilates the
theory presented into practice. Section 4 corresponds to
the results of MOESP in two dynamic systems (simulated
and real coupled tank systems). Finally, the conclusion
section provides general considerations about the work and
discusses possible future works.



2. MATERIALS AND METHODS

2.1 Subspace Identification

In engineering, simple mathematical models can clarify the
dynamics of a system and facilitate the control process.
The branch of engineering known as system modeling
and identification explores methodologies to address the
challenges of deducing a system’s mathematical model.
Experts classify situations that include information on
the physical properties of the model as phenomenological
modeling problems (Figure 1).
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Figure 1. Schematic diagram of the process of obtaining a
model that represents a dynamic system.

In the state-space representation, parameters in linear
equations interconnect the input and output data (Nise
(2020)). The system model can be represented by four
principal matrices in the state-space equations as follows:

{
Ẋ = AX+BU

Y = CX+DU
(1)

These matrices can be derived using specialized algorithms
tailored for this purpose, such as N4SID (Numerical Algo-
rithms for Subspace State Space System Identification) and
MOESP (Multivariable Output-Error State Space).

2.2 Least Squares

The dynamics of a system can be encapsulated in a linear
equation relating input and output at a specific discrete
time, incorporating an error term ε, as represented in the
following equation:

Y = ΦΘ+ ε (2)

The problem can be articulated by omitting error values,
such as determining the parameter matrix Θ, based on
a matrix of input and output samples, Φ. The solution
that minimizes the error between the actual and predicted
values, as developed in Gauss and Stewart (1995), is
encapsulated in the following equation:

Θ̂ = [ΦTΦ]−1ΦTY (3)

The least squares estimator is pivotal within the MOESP
algorithm, but its utility extends beyond this application.
It is a fundamental tool for solving various linear problems
in mathematics, science, and engineering disciplines. Due
to its versatility and effectiveness, the least squares method
is indispensable in numerous scenarios.

2.3 Hankel Block Matrix

A Hankel matrix H is a special matrix characterized by
having constant elements Hij along its skew diagonals,
such that Hij = H(i+1),(j−1). An example of a Hm×n

matrix can be given as follows:

H =


h1 h2 h3 . . . hn

h2 h3 h4 . . . hn+1

h3 h4 h5 . . . hn+2

...
...

...
. . .

...
hm hm+1 hm+2 . . . hm+n−1

 (4)

In subspace identification algorithms, the data is repre-
sented in blocks of Hankel matrices, where it is possible
to separate input and output samples from a system of
order n into blocks of the same dimension, as stated by
Overschee and Moor (1995). To construct it, given N
samples, the order of the Hankel matrix is established
so that the relationship described in the Equation (5) is
maintained and k ≥ n and j ≫ k, resulting in a matrix of
dimension i× j, considering k, i, j, n,N ∈ N.

j = N − k + 1 (5)

The Block Hankel matrix H used in identification algo-
rithms for a system with ne inputs and ns outputs is thus
composed by stacking two blocks of Hankel matrices: one
for the input samples Uk·ne×j and another for the output
samples Yk·ns×j . This definition can be observed in the
Equation (6):

H =

[
U
Y

]
=



u0 u1 u2 . . . uj−1

u1 u2 u3 . . . uj

...
...

...
. . .

...
ui ui+1 ui+2 . . . ui+j−1

y0 y1 y2 . . . yj−1

y1 y2 y3 . . . yj
...

...
...

. . .
...

yi yi+1 yi+2 . . . yi+j−1


(6)

where i = k(ne + ns) and j = N − k + 1.

3. MOESP: MULTIVARIABLE OUTPUT-ERROR
STATE SPACE

The MOESP (Multivariable Output-Error State Space)
algorithm is used in system identification to estimate the
state-space models of dynamic systems. This algorithm
comes in two main variants: deterministic and stochastic.
The deterministic variant assumes a noise-free environ-
ment, focusing solely on deterministic inputs to identify
the system’s parameters without accounting for distur-
bances or noise. On the other hand, the stochastic variant
includes two primary approaches: MOESP-PI (Past Input)
and MOESP-PO (Past Output). MOESP-PI emphasizes
the influence of past inputs on the current state and
outputs, while MOESP-PO focuses on the relationship be-
tween past outputs and the current state. These stochastic
methods incorporate noise into the model, making them
more robust for real-world applications. Both variants
rely on matrix decompositions to derive the state-space
representation from input-output data.

Only the deterministic MOESP method will be considered,
as the focus is on analyzing its functioning, including its
advantages and disadvantages. By concentrating on the



noise-free scenario, we aim to explore the method’s effec-
tiveness in ideal conditions, which will provide a clearer
understanding of its core capabilities and limitations.

3.1 Matrix Decompositions

The QR decomposition is a matrix decomposition where
a matrix with linearly independent columns Am×n repre-
sents the multiplication of an orthonormal matrix Q with
an upper triangular matrix R as follow:

A = QR = [Q1 Q2]

[
0 R12

R21 R22

]
(7)

Another option for decomposing matrices is through Sin-
gular Value Decomposition (SVD), in which any matrix
A ∈ Rm×n can be represented through two orthogonal
matrices U ∈ Rm×m and V ∈ Rn×n and a diagonal matrix
Σ ∈ Rm×n as follows:

A = UΣV T (8)

Singular Value Decomposition (SVD) is a technique in
multiple disciplines, notably signal processing and data
analysis. In dynamic systems identification, SVD is fre-
quently employed to condense data dimensionality, eluci-
date significant patterns, and filter out noise. This applica-
tion improves the accuracy and efficiency of the resulting
models.

3.2 MOESP Algorithm Implementation

This section presents the implementation of the MOESP
algorithm, detailing each workflow step. The process is
illustrated in Figure 2, which visually represents the al-
gorithm’s sequence and operations, enhancing the under-
standing of its practical application.
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Figure 2. MOESP Algorithm Workflow.

The first step in implementing the MOESP algorithm is
constructing the Hankel matrix. This matrix is built by
organizing the input and output data into a structured
form, with each block representing a segment of the
system’s response over time. The order of the Hankel
matrix k must be chosen in this step as it influences the
effectiveness of the algorithm in capturing the system’s
dynamics.

The second step involves the QR decomposition of the
Hankel matrix, which transforms it into two matrices: an
orthonormal matrix Q and an upper triangular matrix
R. Specifically, the matrix R22, derived from this decom-
position as detailed in Equation 7, represents the lower
triangular part of R and will be used in the subsequent
steps of the algorithm. Geometrically, this decomposition
projects the input data onto the output data.

The next step involves performing Singular Value De-
composition (SVD) on the matrix R22, which results in
three matrices: U1, S1, and V1. For the algorithm, only
U1 and S1 will be used. In the context of the studied
algorithm, this decomposition allows the extraction of the
main characteristics of the matrix that projects the output
data onto the input data, reducing its dimensionality.

In situations where system information is not available, the
method developed in Overschee and Moor (1995) provides
a way to estimate the system order n̂ by analyzing the
singular values in the matrix S1. Since these singular values
are arranged in descending order, the system order can be
estimated by identifying the index of the singular value
where the cumulative sum of the absolute values exceeds
90% of the total.

The resulting matrices from these transformations, as
shown also in the work of De Moor et al. (1997), can be
related to the extended observability matrix to find the
matrices A and C. At the same time, the matrices B and
D are determined through algebraic manipulations.

In Equation (9), the relationship between the extended
observability matrix Γ, the matrix A, and the matrix C is
demonstrated. At this stage in the algorithm, defining the
system order n becomes crucial, as it directly impacts the
construction and analysis of the observability matrix.

Γ =


C
CA
CA2

...
CAn−1

 = U1S
1/2
1 (9)

In Equation (10), demonstrated in De Moor et al. (1997),
the extended observability matrices Γ, composed of input
and output samples, are related to the Toeplitz matrix T ,
which connects the state-space equation matrices.

Γ⊥
i YfU

†
f = Γ⊥

i Ti (10)

4. EXPERIMENTAL RESULTS

This section presents the results of applying the MOESP
identification method to a real coupled tank system. The
algorithm calculates the matrices that define the systems’
dynamics from the data collected based on different free
variables (estimated system order). We used a simulated
and a real system to validate the methodology.

4.1 Simulated System

The first system to be analyzed is a numerical and sim-
ulated dynamic system characterized by three discrete
random inputs and four random matrices As, Bs, Cs, and
Ds, which define its behavior and result in two outputs.
We generated all variables using the NumPy library in
the Python language, producing 2,000 input data points
(Figure 3) and 2,000 noisy output data points (Figure
4), which will be provided to the MOESP algorithm. The
matrices used for this analysis are described below:

As =

 0.603 0.603 0 0
−0.603 0.603 0 0

0 0 −0.603 −0.603
0 0 0.603 −0.603





Bs =

1.1650 −0.6965
0.6268 1.6961
0.0751 0.0591
0.3516 1.7971


Cs =

[
0.2641 −1.4462 1.2460 0.5774
0.8717 −0.7012 −0.6390 −0.3600

]

Ds =

[
−0.1356 −1.2704
−1.3493 0.9846

]

Figure 3. Simulated System Input Values.

Figure 4. Simulated System Output Values.

Given the familiarity with this specific system, the algo-
rithm will be applied to the presented data and analyzed
using another set of 2,000 input samples and 2,000 output
samples generated by the same state-space equations of
this fourth-order system.

To explore the choices of the algorithm’s free variables, we
compared the results across three different system orders,
including the order estimated by the algorithm using the
singular values of matrix S1. The magnitude of the singular
values for the simulated system is analyzed in Figure
5. The order n̂ = 4 encompasses 90% of the system’s
information, making it the primary order. The remaining
orders (n̂2 = 3 and n̂3 = 5) are also investigated.

The figure below graphically compares the results obtained
from the MOESP algorithm with different system orders
for both outputs of the Simulated System.

The table below evaluates the samples estimated by the
MOESP algorithm for the Simulated System, considering
the different system orders studied. The values of Mean
Absolute Error (MAE), Mean Squared Error (MSE), Root

Figure 5. Singular values obtained from matrix S1 (above
subplot) and the percentage of the cumulative sum
of these values (below subplot) for the Simulated
System.

Figure 6. Comparison of MOESP Algorithm Results for
Different System Orders in the Simulated System.

Mean Squared Error (RMSE), Coefficient of Determina-
tion (R2), and Variance Accounted For (VAF) are reported
for each output and system order.

Table 1. Evaluation of the samples estimated
by the MOESP algorithm with different orders
compared to the reference samples for the

Simulated System.

Output Order MAE MSE RMSE R2 VAF

I
n̂1 = 4 0.01 0 0.01 1 100
n̂2 = 3 0.57 0.51 0.71 0.83 84.09
n̂3 = 5 0.01 0 0.01 1 100

II
n̂1 = 4 0.01 0 0.01 1 100
n̂2 = 3 0.37 0.22 0.47 0.86 85.94
n̂3 = 5 0.01 0 0.02 1 100

Based on the results presented in the table, it is evident
that the performance of the MOESP algorithm in estimat-
ing samples for the Simulated System varies according to
the considered system order for both outputs. The esti-
mates show excellent performance for each output when
the system order is n̂1 = 4 and n̂3 = 5, indicating almost
exact agreement with the reference values. However, for
the order n̂2 = 3, although there is still a good perfor-
mance, the values found in the evaluation metrics suggest
slightly lower adequacy than the other models for both
outputs.

Additionally, we noted that when the estimated system
order coincides with that of the reference system (n̂1 = 4),
the matrices describing the simulation system’s dynamics
differ. This variation reflects a fundamental characteristic



of the matrix representation of systems: its ability to
represent a system in multiple ways. Thus, a subspace that
captures its main characteristics can describe and identify
any system in a matrix space.

4.2 Coupled Tank System

The second system used to validate the MOESP algorithm
is the Coupled Tanks System Ícaro Araújo et al. (2019),
as shown in the diagram in Figure 7, where there are four
tanks with valves at the bottom through which water flows,
supplied by two electric motors. The changes

Water reservoir

Tank 1 Tank 3

Tank 2 Tank 4

h1(cm) h3(cm)

h4(cm)h2(cm)

d1(cm)

d2(cm) d4(cm)

d3(cm)

D1(cm) D3(cm)

D4(cm)D3(cm)

v1(V) v2(V)

Pump 2Pump 1

Figure 7. Diagram for the Coupled Tanks (Source: Ícaro
Araújo et al. (2019)).

The experiment conducted for data collection lasted for
500 seconds with a sampling time of t = 0.1s. The volt-
ages applied to the two motors (Figure 8) attempt to
approximate a persistently exciting input to reveal the
characteristics of the studied system as much as possible.
Similarly, throughout the entire experiment period, the
outputs (Figure 9) were also collected at the same sam-
pling time t.

Figure 8. Input values of the experiment with the Coupled
Tanks System.

In this experiment, the order of the Hankel matrix will be
fixed as k = 2, while the estimated orders vary around the
standard system order calculated by the singular values.
Figure 4.2 graphically shows the singular values of matrix
S1 in descending order, along with the percentage of the
cumulative sum.

Figure 9. Output values of the experiment with the Cou-
pled Tanks System.

Figure 10. Singular values obtained from matrix S1 (upper
subplot) and the percentage of the cumulative sum of
these values (lower subplot) for the Coupled Tanks.

Thus, the first three largest singular values already en-
compass more than 90% of the total cumulative sum.
Therefore, the standard estimated order of the system
for constructing matrices of state-space equations will be
n̂1 = 3. The other studied orders will be n̂2 = 2 and
n̂3 = 4. The figure below graphically compares the results
for each order n̂ of the Coupled Tanks System.

Using a numerical analysis of the estimation made by
MOESP, we considered the following metrics: Mean Ab-
solute Error (MAE), Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), Coefficient of Determina-
tion (R2), and Variance Accounted For (VAF). Table 2
presents the metrics separated by output and the esti-
mated order inserted into the algorithm.

The MOESP algorithm’s effectiveness in nonlinear system
contexts is again highlighted, along with the influence of
the estimated order on the results. In the case of the
Coupled Tanks, it is evident that the best performance
was not achieved by following the standard order calcu-
lated by the singular values. This fact suggests that prior
knowledge of the system plays a crucial role in the system



Figure 11. Comparison of MOESP Algorithm Results for
Different System Orders in the Coupled Tank System.

Table 2. Evaluation of samples estimated by
the MOESP algorithm with different orders
compared to reference samples for the Coupled

Tanks System.

Tank Order MAE MSE RMSE R2 VAF

1
n̂1 = 3 1.575 3.509 1.873 0.753 76.206
n̂2 = 2 2.901 10.572 3.251 0.255 84.798
n̂3 = 4 1.058 1.669 1.292 0.882 88.232

2
n̂1 = 3 1.316 2.587 1.608 0.852 85.44
n̂2 = 2 2.394 7.446 2.729 0.574 89.953
n̂3 = 4 1.173 2.019 1.421 0.885 88.477

3
n̂1 = 3 1.259 2.12 1.456 0.885 88.842
n̂2 = 2 2.247 6.69 2.587 0.637 77.736
n̂3 = 4 1.187 2.054 1.433 0.888 89.196

4
n̂1 = 3 1.008 1.612 1.269 0.894 89.416
n̂2 = 2 1.401 3.024 1.739 0.801 89.325
n̂3 = 4 0.925 1.294 1.138 0.915 91.499

identification, underscoring the importance of considering
additional information during modeling and analysis.

Table 3. Evaluation of samples estimated by
NARX models. Source: Ícaro Araújo et al.

(2019).

Method/Output Tank 1 Tank 2 Tank 3 Tank 4

FROLS 0.0343 0.0946 0.0425 0.0885

SEMP 0.0342 0.0923 0.0408 0.0867

Comparing the results presented in Ícaro Araújo et al.
(2019) with the data in Table 3, it is observed that the
performance of the explored NARX models exceeds the
best case obtained by subspace methods. However, it is
essential to note that this superiority occurs in a low-
complexity system context. In more complex systems,
NARX models require greater computational capacity
and a well-defined structure for process identification.
This need to determine the model structure may pose
an additional challenge compared to subspace methods,
which typically offer a more structured and interpretable
approach to modeling.

5. CONCLUSION

This study addressed some of the main works related
to the system identification problem and how it can be
solved using subspace methods. The main focus was to
analyze the MOESP algorithm and its relevance in this
context, highlighting the need to explore it from different
perspectives. All relevant mathematical concepts were
presented and discussed in detail. An essential aspect
addressed was the free variable associated with the choice
of system order, whose influence on the estimated results
was investigated for different system examples.

The development of this work achieved its objective by ex-
plaining and exploring the MOESP algorithm in different
types of systems and various orders. In doing so, it was
possible to observe the significant impact of the choice of
free variables on the estimated system response and the
feasibility of calculating these variables using the matrices
found within MOESP itself, resulting in the best results
among those mathematically analyzed.

For future work, we propose that other methods, such
as N4SID and CVA, can be explored, like MOESP, in-
volving a detailed analysis of the underlying mathematics
of the algorithms, followed by applying these methods
to different systems and variations of the free variables.
Additionally, the investigation can be expanded beyond
the system order, also exploring the influence of the Hankel
matrix order on the estimated results. By conducting this
comparative analysis, it will be possible to discern which
method better suits different scenarios and discuss their
advantages and limitations more precisely and groundedly.
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