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Abstract—The literature of Deep Active Inference
(DAIF), implementing the generative, biologically inspired
Active Inference framework (AIF) with the Deep Learning
approach, often makes use of a hidden state transition
model to generate current hidden states. It also usually
leverages the Monte Carlo family methods to choose the
agent’s next action that minimizes the Expected Free En-
ergy (EFE). The action identification typically uses either a
stochastic sampling process or a learning of sampled actions
by a ’habit’ model. In this work, we explore an approach
based on the learning and generation of actions as a result
of hidden state transitions. The corresponding generative
model, along with the variational form of the Free Energy
(FE) and the EFE, are formulated for an environment
represented as a POMDP, and the DAIF model architecture
is also presented. We also suggest a novel approach for the
action choice: the generated action minimizing the EFE is
chosen based on the diversity of the expected risk relatively
to that of its originating action set. The AIF agent is
also equipped with top-down, selective, context-dependent
attention mechanisms to control its behavior. Experiments
have been conducted by addressing the continuous versions
of Mountain Car and Inverted Pendulum problems. The
results show the ability of the agent to learn and solve both
problems with promising performance, requiring noticeable
changes only on high-level attention parameters.

I. INTRODUCTION

Active Inference (AIF) is a generative Artificial Intelli-
gence approach, initiated and developed as a conjunction
of biomimetism and Information Theory [1]–[3], lever-
aging neuroscience findings on human and animal brain
studies and built on the Free Energy (FE) minimiza-
tion principle [4]. This framework is anticipated as a
promising approach of generative AI [5] and it notably
recognizes that the brain model implements generative
processes [6] to achieve learning, reasoning and planing
tasks. The relevance of this approach is also confirmed
by experimental evidence, such as [7] which confirms
that cellular and synaptic level behaviour are complying
with the FE principle.

Deep Active Inference (DAIF) is one of the main ap-
proaches to implement AIF for solving problems at scale,
initially addressing MDP (Markov Decision Process)

environments [8]. Varying model architectures have been
suggested, such as [9]–[11], validating also DAIF agent’s
ability to solve Partially Observable Markov Decision
Processes (POMDP) [12], [13].

Presented briefly (see preceding references for more
details), an AIF agent uses its perception model to make
a sequence of observations õ of its environment’s real
states (x̃ being the sequence of a variable x through
time). It uses these observations to build its own beliefs
encoded in hidden states s̃ using its posterior model,
by minimizing a homeostasis-ruled quantity, the FE,
leveraging posterior reconstruction models. The agent in-
teracts with the environment through actions ã executed
by its actuator model, with the aim to enhance its beliefs
about the world and to attain defined goals according
to some provided priors. To choose the best action at
a given time, it uses its internal beliefs to generate the
likely consequences (observations ô) of actions it may
take in the future, and select the action that minimizes
the Expected Free Energy (EFE), a projection of the FE
in the future.

The latter process is integrated in its action policy
π as a planning of successive expected actions. Action
planning efficiency may be one of the DAIF fields that
needs deeper exploration as the implementations usually
show a limitation in their capacity to plan. As each of
the 3 main types of action selection policies (plan-based,
habit and hybrid search, see [4]) brings advantages and
drawbacks, different approaches have been suggested to
achieve progress, e.g.: [9], [12] use bootstrapping of the
EFE evaluation to enable its learning by a specific net-
work, [14] use a ”habit” policy to map states to actions
and use it for minimizing the EFE, while others rely on
Monte Carlo (MC) family methods to achieve the EFE
minimization. To deal with the inherent computational
cost issue of MC approaches, MC Tree Search [15] has
been used to optimize the search effort implied by the
recursive reevaluation of the EFE at each time-step [10],
[11], [16]. Some other authors rely on adapting the EFE
formulation: while all of its components are used by



[11], [17] truncate its formulation, [12] include in it
the environment-provided reward and a discount value
for future time-steps, and [10] add a hyper-parameter to
allow a trade-off between reaching preferred states and
resolving uncertainty.

There is still a debate on the relevant formulation
of the EFE, which is suspected to lack in expected
information gain [18]. Interestingly, a concept of action
choice has been proposed by [19]. Given that the EFE is
composed of risk and ambiguity parts (see section II-B),
when an agent samples diversified actions to evaluate
the corresponding EFEs, it will tend to choose the action
that minimizes the risk to seek for prior realization if the
risks are also diversified. Otherwise, the agent will tend
to choose the action that will enable him a to improve
its representation of the environment, i.e. the action that
minimizes the ambiguity part.

Regarding the model architecture, DAIF agents often
integrate posterior encoding models to implement ap-
proximations of the variational forms of the FE, and
some use habit networks to learn an approximation of
the EFE. Transition posterior models are typically used
to learn the transition from past to present hidden states,
such as in [13]. Besides, while using the continuous form
of the model, discretizing the action space is often used
to lower training complexity [11]–[13].

AIF agents can also be equipped with selective at-
tention mechanisms, enabling the optimization of the
agent’s expected precision (or uncertainty) of states due
to uncertainties and random fluctuations [20]. Learning
rate modulation is viewed as a key feature underlying the
selective attention mechanism [21]. [22] uses learning
rate modulation linearly dependent on the prediction
error magnitude, and many Bayesian approaches use it
as a function of the variance (or uncertainty) in the
current estimate of the predicted reward and in the
reward values [23]. In the context of DAIF, [24] uses
context-dependent precision parameters to generate top-
down, task-dependent, selective attention. [11] imple-
ment a top-down attention mechanism by modeling the
relation between the precision of state transitions, as
described by [25], using a precision parameter based
on the Kullback–Leibler divergence between learned and
predicted actions by the action policy.

In this work, we explore the ability of a DAIF agent,
equipped with top-down attention mechanisms, to learn
and generate its actions and to solve typical continuous
AI POMDP environments, using a transition model to
learn actions from state transitions in a continuous action
space. Due to the inferred nature of the actions, a habit-
like action policy is used, leveraging an action choice
strategy based on the diversity of generated actions and
their expected consequences. We use an EFE formulation
based only on observed quantities, free of empirical

weighting hyper-parameters or environment reward. The
overall goal of this paper is to experiment these new
approaches and analyze the results, rather than perform a
benchmark against other approaches which can perform
far better at this stage.

II. ACTIVE INFERENCE AND GENERATIVE ACTIONS

A. Generative Model

To integrate the concept of generative actions as
resulting from hidden state transition, and considering
the environment as a POMDP, the generative model
P (õ, ã, s̃, π) built by the agent is a joint probability
formulated as:

P (õ, ã, s̃, π) = P (π)P (s0)

T∏
t=1

P (ot | st)

× P (st | st−1, at−1)P (at−1 | st, st−1, π) (1)

where P (π) are the beliefs about policies, P (ot | st)
is the likelihood mapping and P (st | st−1, at−1) and
P (at−1 | st, st−1, π) are posterior transition probabili-
ties of hidden states and generated actions, respectively.
Notably, the model integrates here the agent actions as
part of the sensory information, and the transition prob-
abilities of actions are conditioned on the current and
preceding generated hidden (latent) states. This provides
the agent the ability to build beliefs about posterior
actions based on the transition from the previous to the
current hidden states.

B. Variational formulation

The minimization of the agent’s surprise in AIF relies
on the minimization of the FE which is an upper bound
of the former quantity. The variational free energy is
an approximation of the FE and has many derivations
[3], [4]. We choose here, in a discrete-time context for
continuous spatial and action spaces, the complexity /
accuracy decomposition:

F = DKL[q(st)∥ p(st)]
− Eq(st)[log p(ot | st) + log p(at−1 | st, st−1)] (2)

where q(st) is an approximation of the variational
posterior over states, p(st) is the prior model over
hidden states, and p(ot | st−1) and p(at−1 | st, st−1)
are the likelihood models generating respectively, given
the hidden states, distributions of sensory observations
and actions. Crucially, we call the latter the ’transition
model’ as it reconstructs action distributions while in-
tegrating their consequences on the transition between
the preceding and the current states, st−1 and st. The
Kullback–Leibler divergence term (DKL) represents an
approximation of the generative model complexity which
forces the posterior model to generate a distribution of
hidden states as close as possible to that of the model



prior. The second term is the approximation of the
generative model accuracy, maximizing the expectation
of sensory observations and actions reconstruction over
hidden states. This makes minimizing (2) equivalent to
finding the trade-off between model beliefs and recon-
struction in Variational Autoencoders [26].

To take an action in the future that enhances its
knowledge about the environment and/or promotes the
realization of the preferred perceptions (observations and
actions), the agent must minimize the surprise in the
future (therefore the free energy in the future), using its
generative model to imagine the subsequent observations
of the actions it may generate. To achieve this, the agent
applies action policies corresponding to its beliefs, each
policy π resulting in a value of the expected free energy
G(π) at a given time horizon T , and chooses to perform
the action that is expected to produce the lower G:

P (π) = σ(−G(π))

G(π) =

t+T∑
τ=t

G(π, τ)
(3)

where P (π) is the probability distribution of a policy π
and σ is the softmax function. The action policies used
in our context are detailed in section III.

The formulation of the expected free energy in our
context is, for a future time-step τ , and using the
expected ambiguity / risk derivation:

G(π, τ) = DKL[q(oτ | π)∥ p(oτ )]
+DKL[q(aτ−1 | π)∥ p(aτ−1)]

+ Eq(sτ |π)[H[p(oτ | sτ )]
+H[p(aτ−1 | sτ , sτ−1)] ]

(4)

where p(oτ ) and p(aτ−1) are respectively the agent prior
belief on the observation and the action distributions.
The first two terms of this equation form the risk R
over the outcomes (expressed as the DKL between the
approximated posteriors and the prior beliefs), while the
last term refer to the expected ambiguity A (formulated
as expectations E of outcome and action entropies H).

C. DAIF Model Architecture

The DAIF model architecture implementing our model
(see Fig. 1) is mainly based on amortization and
reparameterization techniques. Neural network models
are used to approximate the variational models: qϕ(st |
st−1, ot, at−1) acts as a hidden state encoder for the
posterior model q(st | st−1, ot, at−1), while pξ(ot | st)
and pθ(at−1 | st, st−1) acts as outcome decoders for the
observation likelihood model p(ot | st) and the transition
model p(at−1 | st, st−1), respectively. Here, ϕ, ξ and
θ are respectively amortization parameters for qϕ, and
network parameters for pξ and pθ.

Training these networks simultaneously in continuous
learning mode boils down to minimize for each time-step
t the objective function corresponding to the variational
FE (2):

Ft = DKL[qϕ(st)∥ p(st)]
− Eqϕ(st)[log pξ(ot | st)
+ log pθ(at−1 | st, st−1)]

(5)

where expectations over qϕ are computed using a single
sample from the encoder. The EFE defined in (3) and
(4) is computed at each time-step using these models’
inference in the future (see also section III) with:

Gt(π) = Rt(π) +At(π) (6)

the risk Rt and ambiguity At parts being:

Rt(π) =

t+T∑
τ=t

[DKL[qϕ(oτ | π)∥ p(oτ )]

+DKL[qϕ(aτ−1 | π)∥ p(aτ−1)] ]

At(π) =

t+T∑
τ=t

Eqϕ(sτ |π)[H[pξ(oτ | sτ )]

+H[pθ(aτ−1 | sτ , sτ−1)]]

(7)

The implementation assumes that st, ot and at are
normally distributed, and that each model outputs mul-
tivariate normal distributions with diagonal covariance
matrices, making the DKL, log-likelihood and entropy
terms easy to compute with standard expressions.

The sensory model alters the agent’s sensory input
in two ways. It first integrates perturbations to sensory
observations by random noise addition εo ∼ N (0, 1)
to each observation o∗ using o = o∗ + εo, while the
agent is supposed to have a perfect perception of the
actual actions applied on the environment by its actuator.
It then normalizes the observations using the physical
domain characteristics to feed the generative model with
observations centered on 0 in the range [−1, 1] and
actions in the range [−1, 1]. This last operation ensures
the model ability to address different environments and
a better fit to deep neural networks’ operational domain.

Actual action a∗t , time-rolling to a∗t−1, is applied by
the actuation model on the environment, after unnormal-
izing the chosen action ât and applying its own physical
constraints and those of the environment.

This architecture enables the transition model to gen-
erate the distribution of actions ât−1 that ensure the
likelihood maximization of the preceding action at−1

using (5), while accounting for the transition between the
preceding hidden states st−1 and the current generated
hidden states st. The latter mapping also makes the agent
learn the actuator behavior and operational domain (e.g.
out-of-domain generated actions result in no change in
perceived observations and actions, and in corresponding
hidden states).



Fig. 1: Agent’s model components overview, where all neural networks of the generative posterior qϕ(st |
st−1, ot, at−1), observation pξ(ot | st) and transition pθ(at−1 | st, st−1) models are trained simultaneously. The
transition model learns actions as hidden state transitions.

The overall generative model, when invoked by the
action policy, acts as an inference machine to generate,
based on its learned beliefs, expected states sτ and
expected outcomes ôτ and âτ for a given time-step τ .
The high-level agent provides prior preferences for ob-
servations p(ot) and actions p(at), as well as functional
hyper-parameters ζ, ϵδ , fδ and η (discussed below).

III. DIVERSITY-BASED ACTION CHOICE

The model described in section II implies an action se-
lection policy where actions are not chosen at each time-
step, but are instead generated as a direct consequence
of the expected hidden states and expected observations
(see Fig. 2). This can be viewed as an extension of ’habit’
action policies [4], with multiple simultaneous policies.

When a set αt =
{
ât,i
}

of N actions is generated
at time-step t (i ∈ [1, N ]), the sets of risk values
Rt =

{
Rt,i

}
and ambiguity values At =

{
At,i

}
are

computed using (7). Following the idea of [19], we
define an action choice strategy based on the comparison
between the diversities (defined below) of these sets. If
the generated action set αt and the risk set Rt have
comparable diversities, the agent is believed to be more
comfortable in choosing the action ât,i resulting in a
risk Rt,i which minimizes the risk set Rt. Otherwise,
the agent will choose the action that minimizes the

ambiguity set At. When choosing the action to minimize
the risk set, the agent decides that it has enough good
representation of the world and seeks for realizing extrin-
sic value. When it chooses to minimize the ambiguity, it
wants to improve its hidden representation of the world
(intrinsic information value).

Diversity is defined as a measure of similarity between
the values of a set. Among the most commonly used di-
versity metrics, the diversity of [27] is category-oriented,
and its adaptation to real-valued sets is not straightfor-
ward. The Vendi score [28] provides good sensitivity to
the dissimilarity of real values, but has the drawback of
being an unbounded estimator, making it of difficult use
in our context. We formulate here a bounded diversity
estimator, δ ∈[0, 1], suitable for reasonably small, real-
valued sets. Its maximum value δmax = 1 corresponds
to a set whose values are as much as possible different
from one another, and its minimum value 0 corresponds
to the least diversified sample, i.e. all elements having
the same constant value. For a one-dimensional sample
x of size N > 1, the diversity estimator δ(x) is defined



Fig. 2: Action policy applied by the agent. From an
initial hidden state sample ŝt at time-step t, a set of N ac-
tions {ât,i=1..N} is generated. Using this set and ŝt, the
generative model infers simultaneously the correspond-
ing sets of likely observations {ôt+1,i=1..N} and hidden
states {ŝt+1,i=1..N}, which are in turn used to generate
the next time-step’s actions {ât+1,i=1..N}. The process
is repeated until reaching the desired time horizon T
(T = 2 here). Each sequence {âτ,i} , τ ∈ [t, t+ T ] is a
separate action policy πi, executed with no intermediary
action choice.

as:

δ(x) =
σ(x)

ν(x)
, ν(x)

=

(
N + 1

12

N−1∑
i=1

(xi+1 − xi)
2

)1/2 (8)

where µ(x) and σ(x) are the mean and the standard devi-
ation of x, respectively. The maximum diversity δmax =
δ(x∗) = 1 is obtained for a set x∗ composed of equally
spaced values ∈ [x∗

min, x
∗
max] when sorted in increasing

direction (x∗
i = x∗

min + ∆(i − 1) , i ∈ [2, N ],∆ > 0).
By convention, for a set xc of identical values and ∀N ,
the minimum diversity δmin = δ(xc) = 0.

The diversity ratio δ̄ between the risk set and the
generated action set diversities, respectively δR = δ(Rt)
and δα = δ(αt), is used to compare the diversities and
is defined as:

δ̄ = δR/δα (9)

To identify the range inside which a specific quantity
is to be minimized with respect to the diversity ratio, we

Fig. 3: Decision surface for the diversity ratio based
strategy. If the diversity ratio δ̄ ∈ [1−ϵδ,min, 1+ϵδ,max]
(red zone), the agent chooses the action minimizing Rt,
otherwise it chooses the one minimizing At (blue zone).

define diversity ratio bounds:

ϵδ,min ∈ [0, 1], ϵδ,max ∈ [0,+∞[ (10)

The Fig. 3 shows the decision surface depicting the
agent’s strategy: as the agent prefers risk and action
set diversities that are near, and tolerates risk sets more
diversified than action sets, the agent chooses the action
which minimizes the risk set Rt if the diversity ratio δ̄ is
near or over 1, with a tolerance 1+ϵδ,max. Similarly, the
agent tolerates risk diversities slightly below 1 by ϵδ,min.
Otherwise, the agent chooses the action which minimizes
the ambiguity set At. These bounds are hyper-parameters
that could be viewed as a qualification of the agent’s
behaviour in its action choice: the higher are ϵδ,min or
ϵδ,max, the more the agent is ’ambitious’, having a higher
probability of choosing actions that minimize the risk.

IV. TOP-DOWN ATTENTION

To integrate top-down selective attention, we introduce
precision parameters ζo and ζa in the agent’s generative
model, following [25], to equip the agent with beliefs
about the uncertainty in likelihood mapping from hidden
states to observations and actions, respectively. The Free
Energy equation (2) becomes:

F = DKL[q(s)∥ p(s)]− Eq(s)[ζo log p(o | s)
+ ζa log p(at−1 | s, st−1)] (11)

where the current time t subscript is omitted for read-
ability. Similarly, integrating expected precision over



outcomes using the precision parameters ζe,o and ζe,a
gives the new form of (4):

G(π, τ) = ζe,o DKL[q(oτ | π)∥ p(oτ )]
+ ζe,a DKL (q (aτ−1 | π) ∥ p (aτ−1))

+ Eq(sτ |π)[ζe,o H [p(oτ | sτ )]
+ ζe,a H [p(aτ−1 | sτ )] ]

(12)

Crucially in our work, these parameters are state-specific,
each state having its own precision and expected preci-
sion parameter.

We also equip the agent with context-dependent, top-
down attention through attention parameters provided
by the high-level agent. In addition to the definition of
preferred prior distributions, to guide the active infer-
ence agent into attaining the assigned goal of the task,
the high-level agent evaluates the agent’s performance
given the goal, defines the learning rate of the agent
with respect of its performance on the task and defines
steering the agent’s action policy to attain the goal.

The agent’s performance on a task in an environment
E is modeled as a score function S of the observations,
the preferred prior distributions and a high-level, task
dependent, objective O(E, t), in a time window w:

S = S (oτ , p(oτ ), p(aτ ),O(E, τ)) ,

τ ∈ [t− w, t] , S ∈ [0, 1] (13)

If the task involves reaching a goal in the context of
episodes, the performance is often impacted by a high-
level evaluation of each episode’s observations (e.g.
number of steps before reaching the goal or number of
steps maintaining the observations in the goal range).

The agent is equipped with top-down learning rate
modulation expressed using an exponential decay from a
initial learning rate ηinit as a function of the performance
score:

η = ηinit exp(−λη S) (14)

This way, the nearest agent is to the goal, the lower is
its learning rate, the high-level agent considering that
the performance is good enough and that it prefers
avoiding jeopardizing the learning performance such as
agent over-fitting or catastrophic interference [29]. This
modulation can be viewed as an implementation of
context-dependent (task-dependent), top-down selective
attention applied to the update of the hidden states belief,
driven by prediction errors as hinted by [24] and [23].

Similarly, the nearest the agent is to the goal, the more
it will tend to choose actions that favor the expected
extrinsic value over the expected intrinsic value, i.e. it
considers the ambiguity minimization as less important
relatively to that of the risk, making it more ’ambitious’.
Its action strategy becomes more tolerant towards mini-
mizing the expected risk over ambiguity, and practically,

the agent tolerates more a diversity ratio farther from 1.
This is modeled by adjusting the diversity bounds (10):

ϵ
′

δ,min = ϵδ,min + fδ (ϵδ,min,adj − ϵδ,min)

ϵ
′

δ,max = ϵδ,max + fδ (ϵδ,max,adj − ϵδ,max)
(15)

where ϵδ,min,adj and ϵδ,max,adj are hyper-parameters
specifying the extreme values the adjusted ϵδ defined
in (10) can take, and fδ is the diversity adjustment
factor, itself a monotonically increasing function of the
performance score:

fδ = fδ(S) , fδ ∈ [0, 1] (16)

V. EXPERIMENTS & RESULTS

Experiments consisted in solving the Open AI Gym
Mountain Car Continuous v0 [30] and Mujoco Inverted
Pendulum v4 [31] environments, with their default con-
figurations. Both environments truncate the episodes
when 103 steps are reached. The agent was asked to
solve these continuous problems in a continuous learning
mode, making the agent interacting with the environ-
ment, learning and inferring at each time-step. Only the
environment states were reset at the beginning of each
episode, while a completely new agent was used for each
new experiment.

Prior preference over observation distributions were
fixed, over all observations and time, to normal dis-
tributions: p(oi) ∼ N (µp,o,i , σp,o,i). Whilst the action
prior preference p(aτ−1) in (12) was discarded using
the top-down attention parameter ζe,a = [0] for both
environments, allowing the agent to freely generate ac-
tions but still learning actuator domain and state tran-
sitions, the selection of expected observations through
the parameters ζe,o was problem-specific. Therefore,
defining a prior distribution was only needed for selected
observations. For both problems, the high-level agent
relied on the end of episode evaluation to steer the DAIF
agent behavior at the higher level (via the top-down
attention mechanism), i.e. did not integrate the reward
at each step in the EFE, but evaluated the performance
as the achievement of the entire experience in the entire
episode.

The same model architecture was used for both prob-
lems, using 2-layer neural networks of size 20 for each of
the posterior, observation likelihood and transition mod-
els. The latent dimensions of encoded hidden states were
problem dependent. The Adam optimization algorithm
was used to minimize (5) as the main loss with respect to
the model parameters ϕ, ξ and θ, completing one epoch
per time-step.

Three baseline agents were used to enable model
evaluation: i) a ’random action agent’ was asked to solve
the problem by performing an action randomly sampled
from a uniform distribution (ât ∼ U(−1, 1)), i.e. not



using its transition model to infer actions; ii) a dummy
’no action agent’ was not allowed to perform actions
(ât = 0); iii) a ’random generated action agent’ choosing
randomly the action from the generated action set αt,
instead of applying the diversity-based action choice
strategy described in section III.

A. Mountain Car

The Mountain Car is a typical complex problem used
in AIF and reinforcement learning to assess agent ability
to learn the environment dynamics. The goal for the
agent is to move a car to a goal at the top of a mountain
(see Fig. 4). This goal can only be reached if the car
is first moved to the opposite side of the mountain to
gain momentum, forcing the agent to build an internal
model integrating the physical laws of the environment
to succeed.

The environment provides a bi-dimensional car state
vector [position, velocity]. Both were selected as ob-
served states in (11), along with the action observation
(ζo = [1, 1], ζa = [1]). The expected position and
velocity were also selected in expected observations of
(12) (ζe,o = [1, 1]). The prior preferences on states
were fixed to p(o1) ∼ N (µp,o,1 = 1 , σp,o,1 = 0.1)
and p(o2) ∼ N (µp,o,2 = 0.08 , σp,o,2 = 3). The latent
dimensions of encoded hidden states were set to [4, 2].
The experiments were run with a maximum duration of
24 103 episodes.

The task-dependent, high-level objective function set
for this problem is a success condition at the granularity
of the episodes, where the agent must achieve nsse = 10
successive success episodes nse:

O(o, t) = O(nse, nsse) = H

(
nsse∑
k=1

nse,k − nsse

)
(17)

where H is the Heaviside function, while the score
function (13) was simply set to S(O) = 0, the diversity
adjustment factor (16) was set to fδ = 0 and the
empirically identified values in (14) and (15) were:
ηinit = 1.5 10−4, λη = 0 (no decay), ϵ∗δ,min = 0.4 and
ϵ∗δ,max = 4. Whenever the success condition was met
(i.e. O = 1), the agent was allowed to stop learning and
to switch to inference only mode.

The results of simulations, executed with a time hori-
zon T = 2 and N = 10 action policies, are shown in
Fig. 4. The ’random action agent’ experience resulted
in over 800 steps per episode of in average for 1000
episodes (in red in Fig.). The ’random generated action
agent’ succeeded in solving the problem with around
250 steps per success episode and a large standard
deviation of about 60 (in yellow in the Fig.). When
using the diversity-based action choice strategy, and
although requiring a longer learning time than the latter
experiment, the agent was able to solve the problem with

notably better performance (between 100 and 210 steps
per episode) and higher consistency through episodes,
the best experience (in blue) showing even a negligible
standard deviation.

The Fig. 5 shows the phase diagrams corresponding
to a complete successful episode of the best performing
agent (blue in Fig. 4). A typical sequence of forth, back
and forth of the car can be seen in the phase state
diagram, with a sharp deceleration at the extreme left
position. The corresponding actions exhibit a slightly
noisy evolution although remaining consistent. They
attain the maximum value for many time-steps when the
agent reaches out for momentum on the mountain and
when it heads for the goal.

B. Inverted Pendulum

The Inverted Pendulum Problem is a classical, com-
plex control task where a pole is positioned on a cart
which slides along a horizontal axis (see Fig. 6). The
goal is to keep the pole upright within a tolerated angle
range specified by the environment (±0.2 radians in our
case), otherwise the environment truncates the episode.
A key difference between this problem and the preceding
one is that the episodes start with the pole very near to
the goal, and the challenge for the agent in a continuous
learning mode is to learn the environment dynamics
from much shorter episodes during many episodes in the
beginning of the experiment, and the longer the episode,
the more it is exposed to new states to learn. This results
in a more complex problem to solve for the agent.

The environment provides a four-dimensional state
vector [pole angle, cart position, pole angle velocity,
cart velocity]. All but the third state were selected as
part of the observed states in (11), along with the action
observation (ζo = [1, 1, 0, 1], ζa = [1]), and only the
pole angle was selected for the expected observations in
(12) (ζe,o = [0, 1, 0, 0]). The prior preferences over these
states were fixed to p(o2) ∼ N (µp,o,2 = 0 , σp,o,2 =
0.025). The latent dimensions of encoded hidden states
were set to [6, 2]. The experiments were run with a
maximum duration of 4 104 episodes and 35 104 steps.

The task-dependent, high-level objective function set
for this problem is a success condition at the episode
level, where the agent must achieve nsse = 5 successive
episodes of more than nes = 35 steps:

O(o, t) = O(nspe, nsse, nes)

= H

(
nsse∑
k=1

nspe,k − nes

)
(18)

The score function (13) is modeled as a simple moving
average of the number of steps per episode nspe over nsse

successive success episodes, conditioned by the objective



Fig. 4: Left: Mountain Car environment (position is normalized). Right: Average episode steps per episode (moving
average over 35 steps, bold lines) along with the corresponding standard deviations (filled areas) of agents solving the
Mountain Car problem (truncated to 103 first episodes). The ’random action agent’ (averaged, in red) and ’random
generated action agent’ (yellow) experiences shown for reference. The diversity-based agents (black, green, blue,
cyan) outperform baseline agents and are more consistent compared to the ’random generated action agent’, although
requiring longer learning. They can even achieve noticeable performance and consistency, as in (blue).

Fig. 5: Complete episode phase diagrams of the agent solving Mountain Car problem (from best performing agent,
in blue in fig. 4). Left: phase state diagram, right: corresponding action vs position phase diagram (position is
normalized).



Fig. 6: Left: Inverted Pendulum environment. Right: Average episode steps vs steps (moving average over 35 steps,
bold lines) along with the corresponding standard deviations (filled areas) of agents solving Inverted Pendulum
problem. The experiences of the ’random action agent’ (averaged, in red) and ’no action agent’ (averaged, in
yellow) are shown for reference. The agent ’random generated action agent’ (magenta) failed systematically in
solving the problem. Diversity-based agents succeed with various performances (blue, black, green and cyan). The
agent in (black) shows the ability to recover stable problem solving performance after a first phase of success
followed by a failure phase.

Fig. 7: Phase diagrams of the agent solving Inverted Pendulum problem (showing first 400 steps of a successful
episode from best performing agent in blue in fig. 6). Left: phase state diagram, right: corresponding action to
position phase diagram.



function and weighted by the environment truncation
nenv,max = 1000:

S(O) = S(nspe, nsse, nes)

= O(nspe, nsse, nes)
SMAnsse

(nspe)

nenv,max

(19)

where SMAk(nspe) =
1
k

∑n
i=n−k+1 nspe,i.

Whenever the learning rate η reached the minimum
value ηmin (10−6 in our experiments), the agent was
allowed to stop learning and to switch to inference only
mode. Switching back to learning was allowed if ever
the success condition was not anymore fulfilled (i.e.
O = 0). The permissiveness of the agent for the diversity
ratio when closer to the objective O using the diversity
adjustment factor (16) is modeled as:

fδ = 1− log(η)− log(ηmin)

log(ηinit)− log(ηmin)
(20)

while the empirically identified values in (14) and (15)
are: ηinit = 1.5 10−4, λη = 50, ϵ∗δ,min = 1 and ϵ∗δ,max =
4.

Simulation results, executed with a time horizon T =
3 and N = 10 action policies, are shown in Fig. 6.
Baseline experiments with the ’random action agent’
resulted in 6.1 steps per episode of in average for 500
episodes, with the best episode reaching 24 steps (in
red in Fig.). As this environment starts with a pendulum
at the goal state (the angle being near to 0), the ’no
action agent’ is a more interesting baseline, which lead
to an average of steps per episode of 25.3 over 500
episodes, for which the agent was able to achieve only 2
successive episodes of 35 steps (in yellow in Fig.). The
’random generated action agent’ failed systematically to
outperform the ’no action agent’ baseline (in magenta
in Fig.). Agents using the diversity-based action choice
strategy were able to solve the problem with notably
better performance (between 100 and 600 steps per
episode in average) than the ’no action agent’. The
performance consistency through episodes was however
much lower for the best performing agents (in blue
and black in the Fig.). The latter were also able to
reach several times the environment maximum number
of episodes (103).

The Fig. 7 shows the phase diagrams corresponding
to the 400 first steps of a successful episode of the best
performing agent (blue in Fig. 6). The pendulum angle
was maintained by the agent in a range below 25% of the
maximum allowed angle, caused by a typical movement
of the cart to achieve so. Fast changes of the action
value can be seen, which oscillates around 0, showing
the ability of the agent to react rapidly to avoid moving
too far from the preferred prior.

VI. DISCUSSION

The above results show that the DAIF agents gen-
erating actions as posteriors of hidden state transitions
were able to learn the dynamics of both environments
and solve the corresponding problems. The diversity-
based strategy described in section III enhanced notably
the agent performance when compared to the baseline
agents. More specifically, using this strategy was the only
way for the agents to steadily outperform the ’no action
agent’ baseline in the Inverted Pendulum problem, as the
’random generated action agent’ systematically failed to
achieve so.

The fact that the EFE ((12)) is reward-free, does not
include empirical weighting parameter to balance risk
and ambiguity components and that the training does not
rely on expert experiments is one of the main strengths
of this model as it requires less engineering effort
and hyper-parameter tuning. The time-steps horizon and
number of policies (2 and 10 respectively) used for
the Mountain Car problem may be compared to typical
100 samples per action policy for at least 30 time-steps
horizon for each time-step in [16]. This suggests that this
action generating model coupled to the diversity-based,
’habit’ action planning requires less computational ef-
fort dedicated to the planing task. Besides, the ability
to restart the learning and recover stable performance
shown in Inverted Pendulum results hints to a plasticity
characteristic of the agent’s model, being able to adapt to
new situations where the agent beliefs do not correspond
anymore to the observed situations.

One may notice that relying on the randomly sampled
actions in generated set approach (performed by the ’ran-
dom generated actions agent’) lead to successful learning
in the case where the problem dynamics do not require
frequent, large gradients of actions as in the Mountain
Car problem, but seemed to fail in providing enough
model reactivity, as needed in the Inverted Pendulum
problem.

In the scope of our experiences, for which the duration
was limited in number of episodes or steps, the pro-
portion of agents learning successfully the problem was
about 10%. Integrating top-down attention was key to
stabilize the agent behavior around a parameter subspace
where the objective is achieved. This suggests that more
work should be done on stabilizing the learning, by e.g.
enhancing the top-down attention model, identifying a
more stable optimization algorithm, or introduce efficient
regularization techniques.

VII. CONCLUSION

We have shown in this paper how a deep active
inference agent learning hidden state transitions to gen-
erate its actions can solve complex toy problems in
continuous learning mode. As a perspective for further



investigations, the high-level agent could even be an
Active Inference agent itself, learning to generate ’in-
ternal’ actions, which may correspond in our study to
the steering of top-down attention parameters, destined
to steer the behavior of lower-level active inference
agents. This work may open the door to applying DAIF
to more realistic tasks where obtaining expert experi-
ments or environment reward is difficult, where learning
continuously is necessary as in environments constantly
changing (e.g. robot or vehicle navigation) and where
an integration of high-level and low-level DAIF agents
could be key to solve multi-objective tasks.
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