
EasyChair Preprint

№ 143

Generalizations of the associative operad and

convergent rewrite systems

Cyrille Chenavier, Christophe Cordero and Samuele Giraudo

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 18, 2018



Generalizations of the associative operad
and convergent rewrite systems

May 12, 2018
Cyrille Chenavier1∗, Christophe Cordero1†, and Samuele Giraudo1‡
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Abstract
The associative operad is the quotient of the magmatic operad by the operad congruence

identifying the two binary trees of degree 2. We introduce here a generalization of the
associative operad depending on a nonnegative integer d, called d-comb associative operad,
as the quotient of the magmatic operad by the operad congruence identifying the left and
the right comb binary trees of degree d. We study the case d = 3 and provide an orientation
of its space of relations by using rewrite systems on trees and the Buchberger algorithm
for operads to obtain a convergent rewrite system.

Introduction
Associative algebras are spaces endowed with a binary product ? satisfying among others the
associativity law (x1 ? x2) ? x3 = x1 ?(x2 ? x3). It is well-known that the associative algebras are
representations of the associative (nonsymmetric) operad As. This operad can be seen as the
quotient of the magmatic operad Mag (the free operad of binary trees on the binary generator ?)
by the operad congruence ≡ satisfying

?

? ≡ ?

?
. (0.1)

These two binary trees are the syntax trees of the expressions appearing in the above associa-
tivity law.

In a more combinatorial context and regardless of the theory of operads, the Tamari order
is a partial order on the set of the binary trees having a fixed number of internal nodes d.
This order is generated by the covering relation consisting in rewriting a tree t into a tree t′

by replacing a subtree of t of the form of the left member of (0.1) into a tree of the form of
the right member of (0.1). This transformation is known in a computer science context as the
right rotation operation [8] and intervenes in algorithms involving binary search trees [1]. The
partial order hence generated by the right rotation operation is known as the Tamari order [9]
and has a lot of combinatorial and algebraic properties (see for instance [3, 7]).

A first connection between the associative operad and the Tamari order is based upon
the fact that the orientation of (0.1) from left to right provides a convergent orientation (a
terminating and confluent rewrite relation) of the congruence ≡. The normal forms of the
rewrite relation induced by the rewrite rule obtained by orienting (0.1) from left to right are
right comb binary trees and are hence in one-to-one correspondence with the elements of As.
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This work is intended to be a first strike in the study of the eventual links between the
Tamari order and some quotients of the operad Mag. In the long run, we would like to study
quotients Mag/≡ of Mag where ≡ is an operad congruence generated by equivalence classes of
trees of a fixed degree. In particular, we would like to know if ≡ is generated by equivalence
classes of trees forming intervals of the Tamari order leads to algebraic properties for Mag/≡
(like the description of orientations of its space of relations, nice bases and Hilbert series).

We focus here on one of these quotients CAs(3) which is the operad describing the category of
the algebras equipped with a binary product ? and subjected to the relation ((x1 ? x2) ? x3) ? x4 =
x1 ?(x2 ?(x3 ? x4)). This is a kind of associativity law in higher degree d = 3. This operad is
generated by an equivalence class of trees which is not an interval for the Tamari order. As
preliminary computer experiments show, CAs(3) has oscillating first dimensions (see (3.13)),
what is rather unusual among all known operads. In this paper, we provide an orientation of
the space of relations of CAs(3). For this, we use rewrite systems on trees [2] and the Buchberger
algorithm for operads [4].

This text is presented as follows. Section 1 contains preliminaries about the magmatic
operad and rewrite relations on trees. In Section 2, we define the operad CAs(3) as a particular
case of a more general construction of generalizations CAs(d), d > 1, of As. Finally, Section 3
contains the orientation of the space of relations of CAs(3) (Theorem 3.1). As consequences, we
obtain for CAs(3) the description of one of its Poincaré-Birkhoff-Witt bases (Proposition 3.2)
and the description of its Hilbert series (Proposition 3.3).

1 The magmatic operad, quotients, and rewrite relations
We consider nonsymmetric set-theoretic operads. Let O be such an operad. We denote respec-
tively by ◦i and ◦ the partial and complete compositions of O. For any n > 1, O(n) is the set of
the elements x of O of arity |x| = n. We denote by Mag the magmatic operad, that is the free
operad over one binary generator ?, and we represent the elements of Mag by binary trees. The
arity |t| (resp. degree deg(t)) of a binary tree t is its number of leaves (resp. internal nodes).
Given a binary tree t, we denote by p(t) the prefix word of t, that is the word on {0, 2} obtained
by a left to right depth-first traversal of t and by writing 0 (resp. 2) when a leaf (resp. an
internal node) is encountered. The set of all words on {0, 2} is endowed with the lexicographic
order 6 induced by 0 < 2.

If → is a rewrite rule on Mag such that s→ s′ implies |s| = |s′|, we denote by ⇒ the rewrite
relation induced by →. Formally we have t ◦i (s ◦ [r1, . . . , rn])⇒ t ◦i (s′ ◦ [r1, . . . , rn]), if s→ s′

where n = |s|, and t, r1, . . . , rn are binary trees. In other words, one has t⇒ t′ if it is possible
to obtain t′ from t by replacing a subtree s of t by s′ whenever s→ s′. We use here the standard
terminology (terminating, confluent, convergent, branching pair, joinable, normal form, etc.)
about rewrite relations and rewrite systems [2].

Given an operad O ' Mag/≡ where ≡ is an operad congruence of Mag, we say that→ is an
orientation of ≡ if the reflexive, transitive, and symmetric closure of ⇒ is ≡. We say that →
is a convergent orientation if ⇒ is convergent. When → is a convergent orientation of ≡, the
set of all normal forms of ⇒ is a Poincaré-Birkhoff-Witt basis of the operad O and its elements
are exactly the binary trees avoiding, as subtrees, the trees appearing as left members in →.

We shall use the following criterion to prove that a rewrite relation on Mag is terminating.

Lemma 1.1. Let → be a rewrite rule on Mag. If for any t, t′ ∈ Mag such that t→ t′ one has
p(t) > p(t′), then the rewrite relation induced by → is terminating.
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Moreover, we shall use the following result appearing in [5] specialized on rewrite relation
on Mag to prove that a terminating rewrite relation is convergent.

Lemma 1.2. Let → be a rewrite rule on Mag wherein all trees t and t′ such that t→ t′ have
degrees at most `. Then, if the rewrite relation ⇒ induced by → is terminating and all its
branching pairs of degrees at most 2`− 1 are joinable, ⇒ is convergent.

2 Generalizations of the associative operad
It is known that the rewrite rule → orienting (0.1) from left to right is a convergent orientation
of (0.1). Then, a Poincaré-Birkhoff-Witt basis of As is the set of all right comb binary trees.

Let us now define for any d > 1 the d-comb associative operad CAs(d) as the quotient operad
Mag/≡(d) where ≡(d) is the smallest operad congruence of Mag satisfying

(. . . (? ◦1 ?) ◦1 . . . ) ◦1 ?︸ ︷︷ ︸
d operands

≡(d) ? ◦2(· · · ◦2 (? ◦2 ?) . . . )︸ ︷︷ ︸
d operands

. (2.1)

In words, (2.1) says that the left and the right comb binary trees of degree d are equivalent for
≡(d). Notice that ≡(1) is trivial so that CAs(1) = Mag and that ≡(2) is the operad congruence
defined by (0.1) so that CAs(2) = As.

As shown by the following statement, the operads CAs(d) are related to each other.

Proposition 2.1. For any d > 3, CAs(d) is a quotient operad of CAs(2d−1) and CAs(2) is a
quotient operad of CAs(d).

Proof. Since

d
−

1

d
−

1

?

?

?

?

?

≡(d) d
−

1d
−

1

?

?

?

?

?

≡(d)
d

−
1

d
−

1?

?

?

?

?

(2.2)

where a dotted edge between two internal nodes denotes a left or a right comb tree of degree
d− 1 (hence, the trees of (2.2) are of degree 2d− 1), the relation t≡(2d−1) t′ implies t≡(d) t′ for
any trees t and t′. Hence, ≡(2d−1) is finer than ≡(d), whence the first part of the statement of
the proposition. The second part of the statement of the proposition is a consequence of the
fact that the relation t≡(d) t′ implies t≡(2) t′ for any trees t and t′.

3 The 3-comb associative operad
We now focus on the study of the operad CAs(3). By definition, this operad is the quotient of
Mag by the operad congruence spanned by the relation

?

?

?

→
?

?

?

. (3.1)

3



Generalizations of the associative operad and convergent rewrite systems Chenavier, Cordero, Giraudo

This rewrite rule is compatible with the lexicographic order on prefix words presented at the
beginning of Section 1 in the sense that the prefix word of the left member of (3.1) is lexico-
graphically greater than the prefix word of the right one.

However, the rewrite relation ⇒ induced by → is not confluent. Indeed, we have

?

?

?

?

⇒ ?

?

?

?

and
?

?

?

?

⇒
?

?

?

?

, (3.2)

and the two right members of (3.2) form a branching pair which is not joinable.
In order to transform the rewrite relation induced by (3.1) into a convergent one, we apply

the Buchberger algorithm for operads [4, Section 3.7] with respect to the lexicographic order on
prefix words. Following this algorithm, we need to put the right members of (3.2) in relation
by →. To respect the lexicographic property of the prefix words, this leads to the new relation

?

?

?

?

→ ?

?

?

?

. (3.3)

The Buchberger algorithm applied on binary trees of degrees 5, 6, and 7 provides the new
relations

?

?

?

?

? →

?

?

?

?

?

(3.4),
?

?

?

?

?
→

?

?

?

?

?

(3.5),

?

?

?

?

?

?

→

?

?

?

?

?

?

(3.6),

?

?

?

?

?

?

→

?

?

?

?

?

?

(3.7),

?

?

?

?

?

?
→

?

?

?

?

?

?

(3.8),

?

?

?

?

?

?

?

→

?

?

?

?

?

?

?

(3.9),
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?

?

?

?

?

?

?
→

?

?

?

?

?

?

?

(3.10),
?

?

?

?

?

?

?

→

?

?

?

?

?

?

?
(3.11),

?

?

?

?

?

?

? →

?

?

?

?

?

?

?
(3.12).

We claim that the rewrite relation ⇒ induced by rewrite rule → satisfying (3.1), (3.3), (3.4)—
(3.12) is convergent. First, for every relation t→ t′, we have p(t) > p(t′). Therefore, by
Lemma 1.1, ⇒ is terminating. Moreover, the greatest degree of a tree appearing in → is 7 so
that, from Lemma 1.2, to show that ⇒ is convergent, it is enough to prove that each tree of
degree at most 13 admits exactly one normal form. Equivalently, this amounts to show that the
number of normal forms of trees of arity n is equal to #CAs(3)(n). By computer exploration,
we get the same sequence

1, 1, 2, 4, 8, 14, 20, 19, 16, 14, 14, 15, 16, 17 (3.13)

for #CAs(3)(n) and for the numbers of normal forms of arity n, when 1 6 n 6 14. Hence, we
get our following main result.

Theorem 3.1. The rewrite rule → satisfying (3.1), (3.3), (3.4)—(3.12) is a convergent orien-
tation of the congruence ≡(3) of CAs(3).

The rewrite rule → has, arity by arity, the cardinalities

0, 0, 0, 1, 1, 2, 3, 4, 0, . . . . (3.14)

We obtain from Theorem 3.1 also the following consequences.

Proposition 3.2. The set of the trees avoiding as subtrees the ones appearing as left members
of → is a Poincaré-Birkhoff-Witt basis of CAs(3).

From Proposition 3.2, and by using a result of [6] describing a system of equations for the
generating series of syntax trees avoiding some sets of subtrees, we obtain the following result.

Proposition 3.3. The Hilbert series of CAs(3) is

HCAs(3)(t) = t

(1− t)2

(
1− t + t2 + t3 + 2t4 + 2t5 − 7t7 − 2t8 + t9 + 2t10 + t11) . (3.15)

For n 6 10, the dimensions of CAs(3)(n) are provided by Sequence (3.13) and for all n > 11,
the Taylor expansion of (3.15) shows that #CAs(3)(n) = n + 3.

5



Generalizations of the associative operad and convergent rewrite systems Chenavier, Cordero, Giraudo

Perspectives
Our first axis of perspectives consists in collecting properties about the operads CAs(d). A
natural question consists in finding all the morphisms between the operads CAs(d). Some
surjective morphisms are described by Proposition 2.1 and we can hope to a full description
of these, as well as some possible injections. Moreover, we can try to obtain a convergent
orientation of ≡(d) and general expressions of the Hilbert series of CAs(d) when d > 4. By
computer exploration, we have the sequence

1, 1, 2, 5, 13, 35, 96, 264, 724, 1973, 5355, 14390 (3.16)

for the first dimensions for CAs(4). By applying the Buchberger algorithm on trees of degrees
until 10, we obtain that a convergent orientation of ≡(4) has, arity by arity, the sequence
0, 0, 0, 0, 1, 1, 0, 3, 4, 5, 18, 22 for its first cardinalities. Moreover, for CAs(5), we get the sequence

1, 1, 2, 5, 14, 41, 124, 384, 1210, 3861, 12440 (3.17)
of dimensions and the first cardinalities 0, 0, 0, 0, 0, 1, 1, 0, 0, 4, 5 for any convergent orientation
of ≡(5). Finally, for CAs(6), we get the sequence

1, 1, 2, 5, 14, 42, 131, 420, 1375, 4576, 15431 (3.18)
of dimensions and the first cardinalities 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0 for any convergent orientation
of ≡(6). We can notice that only CAs(3) seems to have oscillating first dimensions.

A second axis concerns a complete understanding of CAs(3). We can try to construct an
explicit basis of this operad. Proposition 3.2 describes a basis in terms of trees avoiding some
patterns but, we can hope to find a simpler description. This includes the description of a
family of combinatorial objects forming a basis of CAs(3) and an adequate definition of a partial
composition map ◦i on these. Moreover, a natural question is to explore the suboperads CAs(3)

in the category of vector spaces.
In a last axis, we can consider further generalizations of As being quotients of Mag by

congruences defined by identifying certain binary trees of a same fixed degree. A possible
question is, as presented in the introduction, to investigate if combinatorial properties of the
trees belonging to a same equivalence class imply algebraic properties on the obtained operads.
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