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Abstract—The main goal of this paper is, to suggest improved 

higher order refined theory to the analysis of perfectly bonded 

stack sandwich and composite laminates with usual type 

lamination configurations. The analysis incorporates 

continuous flexural and in-plane displacements in the interface. 

Furthermore, the transverse shear stress is continuous and also 

constrained with the Lagrange multiplier technique by 

introducing new fourteen unknown variables. The unknown 

variables expressed in terms of interfacial strain energy; 

assuming the interfacial strain energy is continuous throughout 

the thickness of the laminate. To determine the newly 

introduced flexural and in-plane unknowns’ variables, total 

potential energy (TPE) is minimized using varational calculus. 

The numerical results are compared with existing reliable 

published papers. In general, the aforementioned approach is 

sufficient enough to analyze sandwich and laminate structures 

with the required accuracy. 

Keywords- Refined theory; Flexural displacement; In-plane 

displacement; Constraint; Strain Energy; TPE 

I.  INTRODUCTION  

Nowadays, light weight sandwich and composite 

structures are widely used in the aeronautical/aerospace and 

marine industries to gain superior safety, higher payload and 

good fatigue resistance property. To achieve the above 

appropriate properties, multilayered laminate structure should 

requires advanced understanding of statics and dynamical 

behavior of composite materials[1]. Likewise, sandwich and 

composite structures are complicated in analysis and design 

aspect; because some unforeseen failure modes like 

delamination’s are considered [2-4].To overcome the 

aforementioned challenges inter-laminar strain energy 

continuity assumption based refined modeling has suggested. 

This approach gives limitless ways to design and optimize the 

laminates in accordance with the applied external load. 

In general, there is no exact mathematical assumption to 

analyze sandwich and laminated composite plate with the 

required accuracy. To plug in the gap, this paper play a vital 

role by considering layer by layer refined theory analytical 

approach with assumption of perfect bond between layers and 

the interfacial strain energy continuity throughout the 

thickness of the laminate. 

The energy in the interfaces to estimate the mechanical 

behavior of the laminate structures. The theory is implemented 

on layer by layer technique; in which total potential energy of 

each layer has minimized by Lagrange multiplier, in-plane and 

flexural displacement using varaitional calculus. To maintain 

the principle of continuous uniform deformation theory the 

plies are bounded perfectly and the continuity conditions 

constrained by the Lagrange multipliers to satisfy the 

boundary conditions in terms of in-plane and flexural 

displacements. Using the above approach, the in plane and 

flexural stresses can be easily analyzed in each layer of the 

lamina [5-7]. 

In general, we considered a refined composite and 

sandwich plate theory that incorporates continuous strain 

energy within the interfaces to calculate the mechanical 

behavior of laminate structures. Our theory is implemented 

using a layer-by-layer technique in which the total potential 

energy of each layer is minimized via the Lagrange multiplier 

to obtain in-plane and flexural displacements using variational 

calculus. To maintain the principles behind the continuous 

uniform deformation theory, the plies are perfectly bonded and 

the continuity conditions are constrained by the Lagrange 

multipliers to satisfy the governing equilibrium equation using 

boundary conditions to determine the unknown variables. By 

applying this approach, the flexural and in-plane stresses are 

easily analyzed at each layer of the lamina. Further, these 

formulations are calculated to yield easier plate configurations 

in two dimensions. 
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II. POTENTIAL ENERGY MINIMIZATION 

In order to determine the natural boundary conditions 

and governing equilibrium equations in flexural and in-plane 

form, we can use minimization of total potential energy. In ord

er to analyze the above geometry of plate we have been made t

he following fundamental assumptions.(1) The laminate have 

uniform thickness and symmetrical at the mid-plane; to simplif

y the governing equilibrium equations; (2)The core is compres

sible ;(3) The global axes does not coincide with the local axes 

of symmetry; (4) The skin plies bonds to core perfectly; (5) Th

e core and skin layers are linear elastic (6) The face and core l

ayers are considered as 2D and 3D structures respectively; (7) 

The plate assumed to be flat and naturally it has no curve.      

Under this assumption, all odd polynomial superscript coeffici

ents become zero in the equilibrium equations. Therefore, the 

nine governing equilibrium equations of the laminate can be se

parated into five flexural and four in-plane components. By 

incorporating the constraints, the total potential energy 

minimized as follows.  
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The interfacial strain energy formulated as follows 
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III. ANALYTICAL CLOSED FORM SOLUTIONS  

The aim of analytical closed form solutions is, to 

determine the unknown variables analytically. The unknown 

variables can be obtained from the displacement and inter-

laminar strain energy continuity formulas. For this approach 

the Lagrange, in-plane and flexural displacements equations 

are expanded as Fourier series based on boundary conditions. 

Considering a load: 

 1 2sin sin 3o
mnq Q x x   

IV. RESULTS  

Symmetric three layered simply supported square 

composite and sandwich plate with height is equal to 10h t  

be used. Applying various aspect ratios(S) the numerical 

results of flexural displacement, inter-laminar shear stress and 

in plane stress are shown in the Table-1 and 2.Table-1 2 and 3 

shows that, the percentage error obtained from the suggested 

approach is in a good agreement with exact elasticity 

solution[8] and in conclusion while the error percentages 

decreasing as the plate aspect ratio increase. For S, equal to 4, 

10 and 20, the new approach gives a better estimate of in-

plane stress and inter-laminar shear stress than other 

approaches for the given aspect ratios. Furthermore, for very 

thin ply (a/h=50 and above) the suggested theory contributes a 

better accuracy for in-plane stresses as compared to other 

classical models.  

The results in the tables report are obtained by the 

following non-dimensional formulas: 

 

 

3 3

22 22
1 1 2 24 4

2

22 22 2

3 2 2

22
3 3 11 11 12 124 2 2

100* 100*
, ,

100*
, , 4

h E h E
u u u u

qa qa

h

qa

h E h h
u u

qa qa qa

 

   

   
    

   

 
  

 

     
       

    

 

Figure-1. Sandwich plate 

 



 3  

 

 

 

SUMMARY 

In this paper, we explored and analyzed the accuracy of a 

layer-by-layer refined theory model with flexural and in-plane 

displacement continuity in a laminate composite and sandwich 

plate. The improved higher-order theory was applied for 

efficient execution of the refined theory. Inter-laminar 

continuity equations were also constrained using Lagrange 

multipliers by introducing new variables. The existing and 

newly introduced variables were then solved through a total 

potential energy minimization technique. Here, Navier-type 

analytical closed-form solutions were adopted for analyses. 

Considering simply supported boundary conditions, we 

analyzed higher and lower-aspect ratio sandwich plates. 

Further, the sandwich plate was subjected to sinusoidal 

distributed loading on the top face. Given this, we calculated 

all flexural displacements, in-plane displacements, in-plane 

stress, and interfacial shear stresses and then compared them 

with exact values presented in previous studies. Further, we 

performed some parametric tests, with results showing that the 

aspect ratio increases the accuracy of the analysis also 

increases for the above approach. We also found that each 

displacement or stress component requires its own plate model 

(which differs according to the change in outputs) to obtain 

exact results. Further, the accuracy of the solution also 

depends on thickness coordinate 3x . The key advantage of our 

proposed approach is the ability to obtain remarkably accurate 

results for all ranges of aspect and modular ratios. Further, if n

eeded, it is possible to enhance our proposed approach by deco

mposing the lower-aspect ratio layer into a number of higher a

spect ratio layers. 

ACKNOWLEDGMENT 

I acknowledge NIIDE and Pukyong National University for 

their material support of this research. 

REFERENCES 

[1] J. R. Vinson, The behavior of sandwich structures of 

isotropic and composite materials: CRC Press, 1999. 

[2] A. C. Garg, “Delamination—a damage mode in 

composite structures,” Engineering Fracture Mechanics, vol. 

29, no. 5, pp. 557-584, 1988. 

[3] F. Crossman, W. Warren, A. Wang, and G. Law Jr, 

“Initiation and growth of transverse cracks and edge 

delamination in composite laminates Part 2. Experimental 

correlation,” Journal of Composite Materials, vol. 14, no. 1, 

pp. 88-108, 1980. 

Table:1 Error Percentage of maximum stress in non-

dimensional form(0/core/0) 
S source   

11  22   12   3u   

2 Elasticity[8] ±2.653 ±0.3919 ±0.2338 0.1402 

 New ±2.6593 ±0.3917 ±0.2337 0.1405 

 Error 0.2375 0.05103 0.04277 0.07133 

4 Elasticity[8] ±1.512 ±0.2533 ±0.1481 0.1072 

 New ±1.5139 ±0.25314 ±0.1479 0.1075 

 Error 0.1257 0.063166 0.02057 0.2789 

10 Elasticity[8] ±1.152 ±0.1099 ±0.0707 0.0527 

 New ±1.153 ±0.10976 ±0.07059 0.0529 

 Error 0.0868 0.03639 0.15558 0.3795 

20 Elasticity[8] ±1.110 ±0.070 ±0.0511 0.0361 

 New ±1.112 ±0.070017 ±0.05118 0.0364 

 Error 0.01801 0.0142 0.1524 0.528 

50 Elasticity[8] ±1.099 ±0.0569 ±0.0446 0.0306 

 New ±1.0991 ±0.056905 ±0.04463 0.03064 

 Error 0.018 0.00878 0.0826 0.615 

100 Elasticity[8] ±1.098 ±0.0550 ±0.0437 0.0297 

 New ±1.099 ±0.0551 ±0.0438 0.02982 

 Error 0.015 0.0059 0.076 0.7403 

Table-2:Error percentage for orthotropic face sandwich 

plate 

S   source   

 11
   

 

22
   

12
  3

u   

2 Kant -2[5] ±4.0665 ±0.531 ±0.5184 39.0218 

 New ±4.0668 ±0.5340 ±0.5171 39.042 

 Error 0.0074 0.0073 0.2505 0.0518 

4 Kant -2[5] ±1.7931 ±0.2128 ±0.2702 14.4949 

 New ±1.7704 ±0.2138 ±0.2725 14.471 

 Error 5.79 5.46 4.76 6.0985 

10 Kant -2[5] ±0.8344 ±0.1527 ±0.1352 3.8899 

 New ±0.8345 ± 0.1533 ±0.1354 3.8925 

 Error 0.0046 0.052 0.1479 0.0668 

100 Kant -2[5] ±0.6647 ±0.0642 ±0.0699 1.0806 

 New ±0.6648 ±0.0641 ±0.0700 1.0827 

 Error 0.015 0.1558 0.0121 0.628 

 

Table-3 Error percentage for composite plate 
S source     

11
   

22
      

12
     

3
u   

2 Elasticity[8] 0.937 0.669 0.0859 4.9362 

 New 0.93814 0.670096 0.086099 4.93853 

 Error 0.12166 0.16442 0.2328 0.0474 

4 Elasticity[8] 0.755 0.556 0.0505 1.7287 

 New 0.7558698 0.556799 0.0505627 1.72907 

 Error 0.1152 0.14388 0.12475 0.021735 

10 Elasticity[8] 0.59 0.285 0.0289  

 New 0.590631 0.285359 0.028932 0.7171 

 Error 0.1069 0.1263 0.1136  

20 Elasticity[8] 0.552 0.21 0.0289  

 New 0.552563 0.210242 0.028930 0.5427 

 Error 0.1021 0.1154 0.1045  

50 Elasticity[8] 0.541 0.185 0.0216 0.4432 

 New 0.541471 0.185172 0.0216209 0.443282 

 Error 0.087 0.093 0.0968 0.0187 

100 Elasticity[8] 0.539 0.181 0.0213  

 New 0.539442 0.181164 0.021319 0.4347 

 Error 0.082 0.0906 0.0932  



 4  

[4] P. P. Camanho, and C. G. Dávila, “Mixed-mode 

decohesion finite elements for the simulation of delamination 

in composite materials,” 2002. 

[5] T. Kant, and K. Swaminathan, “Analytical solutions 

for the static analysis of laminated composite and sandwich 

plates based on a higher order refined theory,” Composite 

structures, vol. 56, no. 4, pp. 329-344, 2002. 

[6] T. Kant, and K. Swaminathan, “Estimation of 

transverse/interlaminar stresses in laminated composites–a 

selective review and survey of current developments,” 

Composite structures, vol. 49, no. 1, pp. 65-75, 2000. 

[7] J. N. Reddy, “A simple higher-order theory for 

laminated composite plates,” Journal of applied mechanics, 

vol. 51, no. 4, pp. 745-752, 1984. 

[8] N. J. Pagano, "Exact solutions for rectangular 

bidirectional composites and sandwich plates," Mechanics of 

composite materials, pp. 86-101: Springer, 1994.       

 


