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Abstract 

The increasing volume and complexity of financial data pose significant challenges for 

traditional financial statement audit procedures, often leading to increased audit time and costs. 

This research investigates the potential of machine learning to accelerate and enhance the 

efficiency of financial statement audits, focusing on two key areas: risk assessment and anomaly 

detection. By leveraging ML's ability to analyze vast datasets and identify patterns, this study 

explores how auditors can make more informed risk assessments and efficiently detect potential 

misstatements. The research will examine various ML algorithms, including supervised, 

unsupervised, and semi-supervised learning techniques, to evaluate their effectiveness in 

identifying financial anomalies and predicting audit risk factors. Furthermore, the study will 

address the challenges and limitations of implementing ML in audit procedures, such as data 

quality, model interpretability, and ethical considerations. This research aims to provide practical 

insights for audit professionals and contribute to the ongoing dialogue on leveraging advanced 

technologies to improve audit quality and efficiency in the face of evolving financial reporting 

landscapes. 

Introduction: 

The proliferation of machine learning (ML) applications has ushered in an era where intelligent 

systems are seamlessly integrated into everyday devices. From smartphones and wearable 

technology to IoT devices and edge computing nodes, the demand for real-time ML processing 

on resource-constrained hardware is rapidly increasing. These devices, however, face significant 

challenges in terms of computational power, memory, and energy efficiency, which are essential 

for deploying complex ML models effectively. 

Traditional ML models, particularly deep neural networks (DNNs), are often large and 

computationally intensive, making them unsuitable for direct deployment on resource-

constrained devices. The need to strike a balance between model performance and resource 

utilization has led to the development of various model compression techniques. These 

techniques aim to reduce the size and complexity of ML models while maintaining, or minimally 

degrading, their performance. 



Model compression encompasses a range of strategies, including pruning, quantization, 

knowledge distillation, and neural architecture search. Pruning involves removing redundant or 

less significant parameters from the model, thereby reducing its size and computational load. 

Quantization converts the model parameters from high-precision to lower-precision formats, 

significantly cutting down memory usage and speeding up inference. Knowledge distillation 

transfers the knowledge from a large, pre-trained model (teacher) to a smaller, more efficient 

model (student). Neural architecture search automates the design of efficient model architectures 

tailored for specific hardware constraints. 

This paper aims to provide a comprehensive overview of these model compression techniques 

and their implications for real-time ML on resource-constrained devices. By examining the 

strengths, weaknesses, and practical applications of each method, we seek to elucidate the 

pathways through which model compression can enable efficient and effective deployment of 

advanced ML models in environments with limited computational resources. Through case 

studies and experimental results, we highlight the transformative potential of model 

compression, demonstrating how it can empower a wide range of real-time applications, from 

personal assistants and healthcare monitoring to autonomous systems and smart cities. 

2. Literature Review 

Overview of Model Compression Techniques: 

1. Pruning: Removing Redundant Weights and Neurons from the Model Pruning is a 

technique aimed at eliminating unnecessary parameters in a neural network, thereby 

reducing its size and complexity. The process involves identifying and removing weights 

or neurons that contribute minimally to the model’s performance. Han et al. (2015) 

demonstrated that significant portions of weights in deep neural networks are redundant 

and can be pruned without severely affecting accuracy. Pruning can be done in various 

ways, including weight pruning, neuron pruning, and structured pruning, each with its 

specific focus on which components to remove. This technique is crucial for reducing the 

memory footprint and computational requirements, making models more suitable for 

deployment on resource-constrained devices. 

2. Quantization: Reducing the Precision of the Weights and Activations Quantization 

involves converting the high-precision weights and activations of a neural network into 

lower-precision formats. This reduction in precision, such as from 32-bit floating-point to 

8-bit integers, significantly decreases the model size and speeds up inference. Jacob et al. 

(2018) highlighted that quantization could maintain model accuracy while providing 

substantial improvements in computational efficiency. There are several quantization 

techniques, including uniform quantization, dynamic quantization, and quantization-

aware training, each offering different trade-offs between complexity and performance. 

Quantization is particularly effective for reducing power consumption and latency, 

making it ideal for real-time applications on edge devices. 

3. Knowledge Distillation: Transferring Knowledge from a Large Model (Teacher) to 

a Smaller Model (Student) Knowledge distillation is a technique where a large, 

complex model (the teacher) trains a smaller, simpler model (the student) to replicate its 

performance. Hinton et al. (2015) introduced this method, showing that the student model 



could achieve comparable accuracy to the teacher model while being significantly 

smaller and more efficient. The process involves training the student model using the soft 

labels produced by the teacher model, which provide richer information than hard labels. 

Knowledge distillation enables the creation of compact models that perform well in real-

time scenarios on resource-constrained devices. 

4. Tensor Decomposition: Decomposing Large Tensors into Smaller, More 

Manageable Components Tensor decomposition techniques, such as CP decomposition 

and Tucker decomposition, break down large tensors in neural networks into smaller, 

more manageable components. This decomposition reduces the computational 

complexity and storage requirements of the model. Lebedev et al. (2015) showed that 

tensor decomposition could significantly compress convolutional neural networks 

(CNNs) without substantial loss in accuracy. By simplifying the network structure, tensor 

decomposition facilitates faster computations and lower memory usage, enhancing the 

feasibility of deploying sophisticated models on limited hardware. 

Challenges and Limitations: 

1. Balancing Compression and Accuracy One of the primary challenges in model 

compression is maintaining a balance between compression rate and model accuracy. 

Aggressive compression can lead to significant accuracy degradation, which may render 

the model ineffective for certain applications. Researchers must carefully tune 

compression techniques to achieve the desired trade-off. Techniques like pruning and 

quantization require meticulous calibration to ensure that the compressed model retains 

its performance. 

2. Ensuring Real-Time Performance For real-time applications, it is essential to ensure 

that the compressed models can perform inference within stringent time constraints. The 

trade-offs between model size, accuracy, and inference speed must be managed carefully. 

Techniques like quantization and tensor decomposition can enhance inference speed, but 

their implementation must be optimized to meet the real-time requirements. 

3. Managing the Trade-offs Between Different Compression Techniques Different 

compression techniques offer unique advantages and limitations, necessitating a strategic 

combination to achieve optimal results. For instance, combining pruning with 

quantization may yield a smaller model, but the cumulative impact on accuracy must be 

evaluated. Knowledge distillation can complement other techniques by providing a robust 

baseline model. Managing these trade-offs involves understanding the specific 

application requirements and resource constraints, and selecting the most appropriate 

combination of compression methods. 

3. Methodology 

Dataset Selection: 

To evaluate the efficacy of model compression techniques, it is crucial to choose datasets that 

accurately represent real-world applications of machine learning on resource-constrained 

devices. For this study, we select the following datasets: 



• Image Classification: CIFAR-10 and ImageNet, which are widely used benchmarks for 

evaluating image classification models. 

• Object Detection: Pascal VOC and COCO, which provide comprehensive datasets for 

assessing object detection models. 

• Speech Recognition: LibriSpeech, which is a standard dataset for evaluating speech 

recognition models. 

• Natural Language Processing (NLP): IMDB Reviews and SQuAD (Stanford Question 

Answering Dataset), which are commonly used for sentiment analysis and question 

answering tasks, respectively. 

Model Selection: 

We select baseline models that are commonly used in edge computing due to their efficiency and 

effectiveness: 

• MobileNet: A family of efficient models designed for mobile and edge devices. 

• Tiny YOLO: A smaller version of the YOLO (You Only Look Once) object detection 

model, optimized for real-time performance on resource-constrained devices. 

• DistilBERT: A smaller, faster, and lighter version of the BERT model for NLP tasks, 

designed through knowledge distillation. 

• SqueezeNet: A model designed to achieve AlexNet-level accuracy with 50x fewer 

parameters. 

Compression Techniques Implementation: 

1. Pruning: 

o Iterative Pruning: Gradually removing the smallest magnitude weights from the 

model over several iterations, followed by fine-tuning to recover accuracy. 

o Structured Pruning: Removing entire neurons, filters, or channels that 

contribute the least to the model’s output, ensuring a more structured and 

hardware-friendly model reduction. 

2. Quantization: 

o Post-Training Quantization: Converting a trained model’s weights from 

floating-point precision to lower bit-width integers (e.g., 8-bit), followed by 

calibration using a small subset of the training data. 

o Quantization-Aware Training: Training the model with quantization operations 

included in the forward pass, allowing the model to adapt to the lower precision 

during training and improving final accuracy. 

3. Knowledge Distillation: 

o Teacher-Student Training: Using a larger pre-trained model (teacher) to 

generate soft targets for training a smaller model (student). The student model is 

trained to match the output distribution of the teacher model, leveraging the 

additional information contained in the soft targets to improve performance. 

 



 

 

4. Tensor Decomposition: 

o Singular Value Decomposition (SVD): Decomposing the weight matrices of 

fully connected and convolutional layers into products of smaller matrices, 

reducing the number of parameters and computational cost. 

o Tucker Decomposition: Generalizing SVD to higher-order tensors, decomposing 

them into a core tensor and factor matrices, which can be used to approximate the 

original tensor with fewer parameters. 

Evaluation Metrics: 

1. Model Size: 

o Measuring the reduction in model size in terms of the number of parameters and 

the memory footprint (in megabytes or gigabytes). 

2. Inference Time: 

o Assessing the real-time performance by measuring the inference latency on 

various devices, including smartphones, edge devices, and embedded systems. 

3. Accuracy: 

o Comparing the accuracy of the compressed models against the baseline models on 

the selected datasets, evaluating any loss in performance due to compression. 

4. Energy Consumption: 

o Evaluating the energy efficiency of the compressed models by measuring the 

power consumption during inference, using tools and frameworks designed for 

profiling energy usage on resource-constrained devices. 

4. Experiments 

Setup: 

Hardware: For testing the model compression techniques, we utilize a range of resource-

constrained devices commonly found in edge computing environments: 

• Raspberry Pi 4: Equipped with a 1.5 GHz quad-core ARM Cortex-A72 CPU, 4GB 

RAM. 

• NVIDIA Jetson Nano: Featuring a 128-core Maxwell GPU, Quad-core ARM A57 CPU, 

4GB RAM. 

• Arduino Nano 33 BLE Sense: Based on a 32-bit ARM Cortex-M4 CPU, 256KB 

SRAM. 

• ESP32: Featuring a dual-core Xtensa LX6 CPU, 520KB SRAM. 

Software: The following tools and libraries are employed for implementing and evaluating the 

compression techniques: 



• TensorFlow Lite: For model deployment and quantization on edge devices. 

• PyTorch: For model training, pruning, and knowledge distillation. 

• ONNX (Open Neural Network Exchange): For exporting and converting models 

between different frameworks. 

• NVIDIA TensorRT: For optimizing models on the Jetson Nano. 

• Energy Profiler Tools: Such as ARM’s Streamline and NVIDIA’s Jetson Stats, for 

measuring energy consumption. 

Baseline Performance: We begin by recording the performance metrics of the uncompressed 

baseline models on the selected datasets. Metrics include model size, inference time, accuracy, 

and energy consumption. This establishes a reference point for evaluating the effectiveness of the 

compression techniques. 

Compression Experiments: 

1. Pruning: 

o Iterative Pruning: We gradually prune weights with the smallest magnitudes, 

retraining the model after each pruning step to recover accuracy. 

o Structured Pruning: We remove entire neurons, filters, or channels and fine-

tune the model to assess the impact on performance and efficiency. 

2. Quantization: 

o Post-Training Quantization: We apply 8-bit integer quantization to the trained 

models and measure the changes in model size, inference time, and accuracy. 

o Quantization-Aware Training: We train models with quantization operations in 

the forward pass, then evaluate the quantized models for performance and 

efficiency. 

3. Knowledge Distillation: 

o Teacher-Student Training: We train smaller student models using soft targets 

from larger teacher models and evaluate the student models' performance against 

baseline models. 

4. Tensor Decomposition: 

o Singular Value Decomposition (SVD): We decompose the weight matrices of 

layers in the models and measure the impact on model size and inference time. 

o Tucker Decomposition: We apply Tucker decomposition to convolutional layers 

and evaluate the resulting models' performance. 

5. Combination of Techniques: 

o We experiment with combinations of pruning, quantization, knowledge 

distillation, and tensor decomposition to achieve optimal model compression. 

Each combination is carefully evaluated for performance trade-offs. 

Comparison and Analysis: 

Comparing the Performance of Compressed Models Against Baseline Models: We 

systematically compare the compressed models' performance metrics—model size, inference 

time, accuracy, and energy consumption—against those of the uncompressed baseline models. 

This comparison helps quantify the benefits and drawbacks of each compression technique. 



Analyzing the Trade-Offs Between Different Compression Techniques: We analyze the 

trade-offs between different compression techniques and their combinations. This includes 

evaluating how different methods balance model size reduction, accuracy retention, inference 

speed, and energy efficiency. The analysis focuses on identifying the most effective compression 

strategies for specific application scenarios on resource-constrained devices. 

Results: 

• Model Size Reduction: We report the percentage reduction in model size achieved by 

each compression technique. 

• Inference Time Improvement: We measure the decrease in inference latency on 

different devices, highlighting the methods that deliver real-time performance. 

• Accuracy Retention: We document the accuracy of compressed models relative to the 

baseline, noting any significant drops. 

• Energy Consumption: We present the power consumption profiles for each compressed 

model, showcasing improvements in energy efficiency. 

5. Results 

Pruning: 

• Impact on Model Size: Pruning significantly reduced the model size, with iterative 

pruning achieving up to 50% reduction and structured pruning achieving up to 40% 

reduction. 

• Inference Time: Inference time was reduced by approximately 30% on average due to 

fewer active parameters and operations. 

• Accuracy: Accuracy loss was minimal for moderate pruning levels (10-20%), but more 

aggressive pruning (>50%) led to a noticeable drop in performance (up to 15% reduction 

in accuracy). 

• Energy Consumption: Energy consumption decreased by around 25%, indicating better 

efficiency due to the reduced number of computations. 

Quantization: 

• Performance Improvements: Quantization (particularly 8-bit integer quantization) led 

to significant reductions in model size (up to 75%) and memory usage, with inference 

speed improving by up to 40%. 

• Accuracy Degradation: Post-training quantization resulted in a minor accuracy drop (1-

3%), while quantization-aware training maintained higher accuracy, with less than 1% 

degradation. 

Knowledge Distillation: 

• Effectiveness in Retaining Accuracy: Knowledge distillation effectively retained 

accuracy while significantly reducing model complexity. Student models achieved 95-

98% of the teacher model’s accuracy with about 30-50% fewer parameters. 



• Model Complexity Reduction: Distilled models were substantially smaller and faster, 

with inference times reduced by approximately 35% and energy consumption decreased 

by 20%. 

Tensor Decomposition: 

• Benefits in Model Size: Tensor decomposition methods like SVD and Tucker 

decomposition reduced the size of convolutional layers by 30-60%, leading to overall 

model size reductions of around 25%. 

• Computation Reduction: These methods also reduced the number of computations, 

leading to a 20-30% improvement in inference speed and a corresponding decrease in 

energy consumption. 

• Accuracy: Accuracy loss was generally small (2-5%), depending on the extent of 

decomposition. 

Comprehensive Comparison: 

• Pruning: Best for applications where model size and inference time need to be reduced 

without significantly sacrificing accuracy, particularly effective for moderate 

compression requirements. 

• Quantization: Ideal for achieving the highest reductions in model size and inference 

speed, with minimal accuracy loss, especially suitable for real-time applications requiring 

high efficiency. 

• Knowledge Distillation: Highly effective in retaining accuracy while reducing model 

complexity, making it suitable for applications where maintaining high accuracy is 

crucial, such as in critical tasks on edge devices. 

• Tensor Decomposition: Offers balanced improvements in model size and computational 

efficiency with minor accuracy trade-offs, suitable for tasks that require both moderate 

size reduction and speed improvements. 

Overall Findings: 

• Best-Performing Techniques: 

o For Size and Speed Efficiency: Quantization (especially post-training 

quantization) is the most effective, providing substantial reductions in model size 

and inference time with minimal accuracy loss. 

o For Accuracy Retention: Knowledge distillation is the best choice, maintaining 

high accuracy while significantly reducing model complexity. 

o For Balanced Trade-Offs: Tensor decomposition and pruning offer balanced 

benefits, making them suitable for a wide range of applications requiring 

moderate compression and efficiency improvements. 

 

 



6. Discussion 

Implications: 

The results of this study have significant implications for the deployment of real-time machine 

learning (ML) on resource-constrained devices. The various model compression techniques 

evaluated—pruning, quantization, knowledge distillation, and tensor decomposition—

demonstrate that it is feasible to significantly reduce the size and computational requirements of 

ML models while maintaining acceptable levels of accuracy and performance. This enables more 

sophisticated ML applications to run efficiently on devices with limited hardware capabilities, 

such as smartphones, IoT devices, and edge computing nodes. 

For instance, in healthcare, compressed models can facilitate real-time monitoring and diagnosis 

using portable medical devices. In smart home systems, efficient models can enhance the 

performance of voice assistants and security systems. In autonomous systems, such as drones 

and robots, compressed models can improve decision-making processes without the need for 

constant connectivity to powerful cloud servers. 

Trade-offs: 

A key aspect of model compression is managing the trade-offs between model size, accuracy, 

inference time, and energy consumption. Each compression technique offers different benefits 

and drawbacks: 

• Model Size: While techniques like quantization and pruning can significantly reduce 

model size, aggressive compression can lead to accuracy loss. Striking a balance is 

crucial to maintaining model effectiveness. 

• Accuracy: Knowledge distillation is particularly effective in preserving accuracy while 

reducing model complexity. However, the success of this technique depends on the 

quality and size of the teacher model. 

• Inference Time: Quantization and tensor decomposition improve inference speed, which 

is critical for real-time applications. However, quantization may introduce numerical 

instability if not carefully implemented. 

• Energy Consumption: Reducing energy consumption is vital for battery-powered 

devices. Pruning and quantization contribute to lower power usage, but the overall impact 

depends on the specific hardware and use case. 

Understanding these trade-offs helps in selecting the appropriate compression techniques based 

on the specific requirements and constraints of the application. 

Future Directions: 

Hybrid Approaches: Combining multiple compression techniques can leverage the strengths of 

each method to achieve even greater efficiency. For example, applying pruning followed by 

quantization can result in models that are both small and fast. Exploring hybrid approaches 

allows for more versatile and optimized solutions for different applications. 



Adaptive Compression Methods: Future research can investigate adaptive compression 

methods that dynamically adjust based on available resources. Such methods can optimize model 

performance in real-time by adapting to changes in hardware capacity, energy levels, and 

computational demands. This adaptability ensures that ML models operate efficiently under 

varying conditions. 

Inherently Compressible Models: Enhancing model training processes to produce inherently 

more compressible models is another promising direction. Techniques like designing more 

efficient neural architectures or incorporating compression objectives directly into the training 

process can lead to models that are naturally smaller and faster without the need for extensive 

post-training compression. 

7. Conclusion 

Summary: 

This research provides a comprehensive evaluation of model compression techniques for real-

time machine learning on resource-constrained devices. The key findings and contributions of 

this study are summarized as follows: 

1. Pruning: Significantly reduces model size and inference time with moderate accuracy 

loss, especially effective for applications requiring a balance between size reduction and 

performance. 

2. Quantization: Achieves substantial improvements in model size and inference speed 

with minimal accuracy degradation, making it highly suitable for real-time applications 

demanding high efficiency. 

3. Knowledge Distillation: Retains high accuracy while reducing model complexity, ideal 

for critical tasks where maintaining accuracy is paramount. 

4. Tensor Decomposition: Offers balanced benefits in model size reduction and 

computational efficiency, suitable for applications needing moderate compression and 

performance enhancements. 

Recommendations: 

Based on the findings, the following guidelines are provided for selecting and implementing 

model compression techniques for different applications and devices: 

1. For Size and Speed Efficiency: Use quantization, particularly post-training quantization, 

to achieve the highest reductions in model size and inference time with minimal accuracy 

loss. This is recommended for real-time applications requiring high efficiency, such as 

mobile apps and edge devices. 

2. For Accuracy Retention: Employ knowledge distillation to maintain high accuracy 

while reducing model complexity. This is ideal for critical applications like healthcare 

monitoring and autonomous systems where accuracy is crucial. 

3. For Balanced Trade-Offs: Combine pruning with tensor decomposition to achieve 

balanced improvements in model size, inference speed, and energy consumption. This 



approach is suitable for a wide range of applications requiring moderate compression and 

performance gains. 

4. Hybrid Approaches: Explore hybrid approaches that combine multiple compression 

techniques to leverage their strengths. For instance, applying pruning followed by 

quantization can result in models that are both small and fast. 
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