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Abstract

Botnet communications are obfuscated within legitimate network protocols to avoid
detection and remediation. Domain Name Service (DNS) is a protocol of choice to hide
communication with Command & Control (C&C) servers, where botmasters tunnel these
communications within DNS request and response. Since botnet communications are
characterized by different features, botmasters may evade detection methods by
modifying some of these features. This paper proposes a multi-staged detection approach
for Domain Generation Algorithm (DGA) using domain fluxing, Fast Flux Service
Network (FFSN), and encrypted DNS tunneled-based botnets using BRO Network
Security Monitor. This approach is able to detect DNS-tunneled botnet communications
by analyzing different techniques used to find C&C servers, and also using signature
matching technique to detect DNS-tunneled SSH handshake between bots and C&C
servers.

1 Introduction

Over the years, botmasters have invented various techniques to obfuscate botnet communications
with C&C servers. Since Domain Name Service (DNS) is one of the very few protocols that is allowed
to pass network perimeters without much question, it has become a protocol of choice for botnet
communications. In addition, different techniques, like Domain Generation Algorithm (DGA) and Fast
Flux (FF), have been used by botmasters to make detection and remediation harder.

Domain generation algorithms (DGA) are used to periodically generate a large number of domain
names that can be used to resolve IP addresses of their Command and Control (C&C) servers. “DGAs
allow the algorithmic generation of a large set of pseudorandom domain names using a pre-calculated
seed value known to the attacker. The code for generating the seed value is embedded in the malware
binary to generate domains dynamically” [1]. This technique gained traction from the release of the
Conficker series of malware, which generated 50,000 domain names per day, requiring malware
analysts to pre-register 50,000 domains every day to avoid infection. While DGA generates large
number of domains per day, “fast-flux is a technique to cycle the mappings of domain names to IP
addresses of hosts participating in a botnet, often with short lifetime mappings” [2], making detection
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and remediation extremely hard. One effective remediation technique is to shut down the domain name
at the registrar level, but that takes time and cooperation from all registrars.

In addition, bots tend to initiate a secure shell (SSH) communication, tunneled within DNS, to
establish an encrypted communication channel with their C&C servers. This obfuscation technique adds
further complexity to the already-difficult detection and remediation solutions for botnets.

In this paper, we propose a multi-staged technique to detect botnet communications using DGA, FF,
and DNS-tunneling. We used the Bro Network Security Monitor (NSM) [3] to create rules based on
network anomaly and signature to detect such behavior.

2 Related Work

Dynamic domain generation, fluxing, and tunneling techniques have been used by different malware
families to avoid detection and complicate mitigation efforts. Research communities have proposed
many different approaches and mechanisms to detect botnet communications, most of which are
effective for specific types of botnet. Krmicek [4] examined the NetFlowl of DNS IP traffic and its
relation to the botnet presence in the monitored network. The author studied the DNS behavior of known
malicious and benign domains based on features identified by Bilge et al. [5]. Since NetFlow inspects
only packet headers, not the entire packet payload, Krmicek concluded that "using NetFlow data solely,
for the purpose of botnet detection is not possible" [4], and he mentioned that extracting important
information from the packet payload is the most promising approach for botnet detection.

Dietrich et al. [6] are the first to document DNS-based botnet C&C traffic. They presented a
technique for DNS-based C&C traffic detection and another technique for malware sample
classification based on their behavior. Their work is based on the high entropy of C&C messages
generated by Feederbots; they utilized the fact that encrypted or compressed messages have high
entropy. Non uniform distribution of some resource records such as IP addresses will be a limitation of
their study (e.g., reserved addresses, such as private addresses or multicast addresses, might rarely show
up in Internet DN traffic), whereas other addresses, such as popular websites, might appear more often
in DNS query results. Another limitation is that very short DNS messages may not have the byte entropy
sufficient to produce the desired result.

Lysenko et al. [7] proposed a DNS-based anti-evasion technique for botnet detection. Their
technique is based on a cluster analysis of the features obtained from the payload of incoming DNS
messages. The method uses the semi-supervised fuzzy c-means clustering.

Jin et. al. [8] designed a botnet communication detection method by collecting authoritative NS
records and their IP addresses, as well as monitoring direct outbound DNS queries. Their method is
based on storing NS records with corresponding IP addresses of valid query response pairs, IP addresses
of public DNS servers, and ISP specified DNS servers in a NS-IP database. Any destination IP address
not included in the previously archived Name Server (NS) records is considered suspicious and should
be investigated. In this way, "all unusual domain name resolution that uses direct outbound DNS query
can be monitored" [8].

Caglayan et al. [9] presented the first empirical study of detecting and classifying Fast Flux Service
Networks (FFSNs) in real time. Their approach uses active and passive sensors derived from DNS
monitoring and fusing the component sensors using a Bayesian classifier. The Fast Flux Monitor
Architecture can detect single and double flux behavior in real time with acceptable false alarm rates.

Dabbagh [10] proposed a method for detecting IP ID and TTL covert channels. He proposed a
method based on his observation that "operating systems choose initially a random number for the ID
in the IP header and then increment it sequentially" [10]. Dabbagh concluded that a packet is suspicious
if the new packet has an IP ID smaller than the previous packets. Also, he stated that "detecting TTL
covert channel is based on the fact that the network is stable" [10]. Therefore, the receiver side should
not observe many variations in the TTL values in the IP header of the packets that are coming from the
same source.

138



A Multi-Stage Detection Technique for DNS-Tunneled Botnets T. Ghosh et al.

Zhang et al. [11] made an initial attempt to investigate detection of encrypted communication. Since
the encryption increases entropy, they presented two high-entropy classifiers, used one of them to
enhance the BotHunter, and showed that BotHunter was able to detect encrypted bots.

Antonakakis et al. [12] presented a novel detection system, called Pleiades, which is able to detect
machines within a monitored network that are compromised with DGA-based botnets. Pleiades
monitors traffic below the local recursive DNS server and analyzes streams of unsuccessful DNS
resolutions (Name Error or NXDomain Responses). Pleiades searches for relatively large clusters of
NXDomains with similar syntactic features, and are queried by multiple, potentially compromised,
machines during a specific epoch. There are two phases of detection: the first phase discovers the
presence of DGA and the second classifies the discovered DGA and detects the C&C domain(s).
Although their claim that Pleiades can achieve very high detection accuracy, one limitation of their
evaluation method is "the exact enumeration of the number of infected hosts in the ISP network" [12].
Because the location of monitoring sensors is below the recursive DNS server, they can only obtain a
lower bound estimate of infected hosts. For example, an IP address that generates DNS traffic may be
a NAT, firewall, DNS server, or other device that behaves as a proxy. Also, noisy NXDomains may be
generated to mislead the implementation of Pleiades.

Yadav and Reddy [13] proposed methodologies for utilizing failed domain names (NXDOMAIN)
in the quest for rapid detection of a fluxing botnet’s C&C server. They validated their method by
detecting Conficker botnets and other anomalies with a false positive rate as low as 0.02%. Their
technique can be applied at the edge of an autonomous system for real-time detection. Since their
method is based on detecting botnets utilizing high entropy, botnet owners may alter the way domain
names are created to evade their detection mechanism.

In this paper, we propose a multi-staged detection technique to detect DNS-tunneled botnet
communications. The first stage utilizes NXDomain and Server Failure errors to detect rallying to C&C
servers. In the second phase, the algorithm uses a detection technique relying on a signature matching
based on encoded SSH handshakes within DNS tunnels.

3 Proposed Technique

This paper proposes a novel solution to detect DNS-tunneled botnets at different stages — during
rallying stage when finding the C&C server (DGA and FFSN), and during transmitting data and
controlling the bots (DNS Tunnel).

Currently, botnets implement DGA and/or fluxing techniques to avoid botnet detection and
mitigation. The infected machine sends a high volume of DNS requests in order to find its C&C server.
As a botmaster only registers one or a few domain names (previously known) to carry out the C&C
communication, almost all DNS requests, generated by DGA, sent to find the C&C server will have
unsuccessful resolutions (name error or NXDomain responses). Detection of DGA implementation was
configured based on a threshold of NXDomain responses within an epoch. For example, if the infected
machine sends more than 50 DNS requests within a thirty-minute epoch, and a specific percentage of
these requests have unsuccessful resolutions, BRO NSM will detect the presence of DGA based botnet.

In FFSN, malicious domain name(s) that has/have very low time to live (TTL) (domain expiration
time) forces the DNS systems to frequently refresh the resolution cache of the IP addresses associated
with the domain(s). Although the DNS Server Failure can be related to issues other than fluxing
implementations, these unsuccessful resolutions of very low TTL domain names (Server Failure) can
be utilized for FFSN-based botnets detection. In other words, the detection of FFSN and DF
implementation was configured based on a threshold of the "Server Failure" responses within an epoch.

The frequency of malicious DNS packets can be controlled by the botmaster to evade the detection
threshold. In other words, in case the first stage fails to detect DGA or FFSN presence, another stage
will run. The second stage inspects DNS payloads for DNS-encrypted tunnels based on SSH
connections, also implemented with BRO NSM. The multi-staged approach is shown in Figure 1.
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Figure 1: Multi-staged approach for botnet detection

The thresholds are based on data published by Brandhorst and Pras [14] on statistical analysis of
domain name service traffic. According to the study, percentages of NXDomain errors and Server
Failures were 8.74% and 1.28% respectively of the DNS queries.

In the first stage of botnet communication (rallying stage), a DGA-detection mechanism is applied
every 30 minutes to find if total number of DNS requests is 10 or greater. In this case, two thresholds
are used for the unique NXDomain errors: the first threshold, which is 8% of the total number of DNS
requests, and used if the total number of DNS requests is 50 or more. The second threshold (40%) is
used if the total number of DNS requests is between 10 and 50. The second threshold is utilized to
eliminate false positive detections in idle systems. For example, an idle system running DGA has a
higher percentage of unique NXDomain errors to the total number of DNS requests than the percentage
in an active system running DGA. This threshold should be varied to analyze changes in false positive
detection. In both thresholds, at least four unique NXDomain errors are required for DGA detection.

In fluxing detection, another method used for rallying, different thresholds are set. The fluxing
detection mechanism is applied every 30 minutes if the total number of DNS requests is 8 or greater. In
this mechanism, two thresholds are used for the Server Failure errors. If the total number of DNS
requests is 50 or greater, the first threshold is used, which is 6% of the total number of DNS requests.
The second threshold (26%) is used if the total number of DNS requests is between 8 and 50. Similar
to the DGA mechanism, the second threshold is utilized to eliminate false-positive detection in idle
systems implementing fluxing techniques, which should be varied for further analysis. In both
thresholds, at least three Server Failure errors are required for fluxing detection.

Figure 1 depicts the first stage of the detection algorithm to detect DGA and FF as two parallel
stages for simplicity of representation. However, during implementation, these two stages are combined
as one stage, which is the first stage of our detection algorithm. The DNS threshold, which is 50 DNS
requests every 30 minutes, is set below the lowest average from Brandhorst and Pras’ study [14]. In
other words, different threshold values are set for DGA and fluxing detection. These values need to be
dynamically adjusted with the changing nature of communication.
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Bro Network Security Monitor (Bro NSM) [3] was used as the intrusion and anomaly detection
platform to implement both phases of the detection technique. Detailed discussion of implementation
and results are given in the next section.

4 Implementation and Results

We used Bro Network Security Monitor (Bro NSM) to implement the detection algorithm. Bro
provides an anomaly detection platform with its own scripting language called Bro scripting with an
event-driven approach. Two events were created for DGA detection: dns_request and dns_query reply,
and Sumstats framework was used to summarize the desired statistics. Similarly, two events,
dns_request and dns_rejected were created for Fast Flux detection.

The first phase of the detection technique was tested on the dataset collected from the Stratosphere
Lab, which is a part of the Malware Capture Facility Project at CVUT University, Prague, Czech
Republic [15]. The lab has a significant dataset of malware traffic captures, including different types of
botnets. These datasets were used for DGA and FFSN detection. When we ran our custom Bro rule
against the pre-captured dataset, we were able to successfully detect botnet communications that used
either the DGS or FFSN technique with a false positive rate of <5%. However, we have set the threshold
quite conservatively, increasing which will reduce false positives in our experiment.

For the second stage of detection, we created Bro rules with signature matching. Our approach was
to detect SSH handshake between bots and C&C servers tunneled within DNS request and reply. We
deployed DNS2TCP, a tool designed to relay TCP connections using DNS tunnel. We set up DNS2TCP
clients and server in a virtualized lab environment, generated SSH traffic, captured traffic using
Wireshark, and used Base-64 decoder to decode the packets, and created a signature. Figure 2 shows
the Wireshark packet capture with SSH signature.
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Figure 2: Wireshark packet capture for DNS2TCP traffic

By analyzing packet No. 187 in the capture data, the string
AAACCFNTSCOyLjAtT3BIDINTSF83LjJwMiBVYnVudHUINHVIdW50dTIuMg0 was used to establish
an SSH tunnel. This string is equivalent to SSH-2.0-OpenSSH_7.2p2 Ubuntu-4ubuntu2.2. To detect
other versions of SSH-2.0 connections and/or operating systems, only the CFNTSCOyLjAtT3BIDINTSFS§
part is used to detect SSH connections tunneled in DNS packets. After decoding this Base-64 encoded
string, it is equivalent to SSH-2.0-OpenSSH . To detect only OpenSSH__string, the string T3BIbINTSFS
is used. This signature was used to write a custom Bro script to detect botnet communication tunneled
within DNS.
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On testing the rule with pre-captured dataset, our technique was able to successfully detect DNS-
tunneled botnet communication with < 2% false positive. Since we did not use all variations of SSH
signature, our false negative rate was higher (~10%), which can be reduced by implementing all
variations of SSH signature in the Bro rule.

5 Conclusion and Future Extension

In this paper we presented a multi-staged approach to detect botnet communication. The novel
approach combines both anomaly detection technique and signature matching to detect botnets during
their rallying stage and also during their communication with C&C servers. We developed custom Bro
rules to implement the detection technique and tested the approach on the dataset collected from the
Stratosphere Lab.

Experimental results demonstrated that our approach was able to detect DGA and FF-based botnets
and also DNS-tunneled botnets using SSH signature. There are several opportunities to improve the
approach through future work. The choice of threshold is the first challenge we had. Although we used
published statistics by Brandhorst and Pras [14] on domain name service traffic, this threshold is not
perfect and provides only preliminary results. The system should be able to dynamically detect these
thresholds based on system behavior, which can be a future extension of this research. At the same time,
different variations of SSH signature need to be implemented in the rulesets to improve false negatives
for signature matching.
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