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Abstract

Modern propositional satisfiability (or SAT) solvers are very powerful due to recent developments

on the underlying data structures, the used heuristics to guide the search, the deduction techniques to

infer knowledge, and the formula simplification techniques that are used during pre- and inprocessing.

However, when all these techniques are put together, the soundness of the combined algorithm is not

guaranteed any more, and understanding the complex dependencies becomes non-trivial. In this paper

we present a small set of rules that allows to model modern SAT solvers in terms of a state transition

system. With these rules all techniques which are applied in modern SAT solvers can be modeled

adequately. Furthermore, we show that this set of rules results is sound, complete and confluent.

Finally, we compare the proposed transition system to related systems, and show how widely used

solving techniques can be modeled.

1 Introduction

Many practical problems of computer science are in the complexity class NP. Constraint sat-
isfaction [7], answer set programming [36], and satisfiability checking [6] are well studied for-
malisms that can handle problems of this class. We study the propositional satisfiability problem
(SAT) that consists of a propositional formula and asks whether there exists a satisfying as-
signment for the formula. From a complexity theory point of view SAT is NP-complete [8]
and, thus, intractable. Still, there exists many industrial and academic applications that can
be solved nicely with modern SAT solvers. In many areas in computer science combinatorial
problems arise which can be translated into SAT problems and can be solved by finding a model
for the SAT problem. For instance a SAT-based railway scheduling software outperformed the
native version [14]. Likewise, haplotype matching [23] can be solved nicely with modern SAT
solvers. These are only two examples out of the huge range of successfully solved problems [6].

The success of the SAT approach lies in the strength of today’s SAT solvers. These solvers
construct an assignment by successively interleaving two processes, viz., guessing and propa-
gating the assignment of literals. The main inference rule is unit propagation, an efficient form
of resolution. Combined with a decision rule unit propagation is the core of the basic algorithm
known as the DPLL algorithm [9]. In the case that a contradiction is found in the formula with
respect to the current variable assignment, SAT solvers backtrack and learn a conflict clause
which prevents the current and similar conflicts. With the addition of so-called learned clauses
the basic algorithm is known as CDCL algorithm [28].

Modern systematic SAT solvers are highly tuned and complex proof procedures employing
many advanced techniques like clause learning [28], non-chronological backtracking, restarts [13],
clause removal [3, 4, 11], decision heuristics [4, 29], and formula simplification techniques [20].
Specialized, cache-conscious data structures [17] further contribute to their performance. This
way, today’s solvers like Riss, MiniSAT or Lingeling can handle formulas with millions of
variables and millions of clauses.
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However, the success of modern solvers carries a price tag: increased code complexity. Suc-
cessful SAT solvers like the above mentioned ones consist of multiple thousand lines of code
and are written in programming languages with side effects like C or C++. Due to this code
complexity, the behavior of SAT solvers is hard to understand and state-of-the-art SAT solver
internals are hard to teach. Moreover, finding additional techniques and integrating them into a
SAT solver is getting more complex, as we have to consider the interplay with all the remaining
techniques. Consequently, abstracting from specific algorithms, data structures, and heuristics
is extremely important in order to discover and prove properties of a modern SAT solver as
well as to understand the principles of SAT solving.

The problem of the increased code complexity was tackled already by different formaliza-
tions, notably Linearized DPLL [1], Rule-based SAT Solver Descriptions [27], and Abstract
DPLL [31]. However, these systems do not appropriately model modern SAT solvers anymore.
In particular, preprocessing and applying preprocessing techniques interleaved with search,
known as inprocessing, became a crucial part in SAT solving. Applying formula simplification
techniques also during search is an attractive idea since it allows to use valuable formula sim-
plifications while taking learned clauses into account. For example, the SAT solver Lingeling

benefits considerably from this approach. Järvisalo et al. [20] developed a formal system that
describes the interplay of formula simplifications and the learned clause database.

The contribution of this paper is a new formalism Generic CDCL that allows to model the
computation of modern SAT solvers. Equipped with a small set of simple state transition rules,
we can model all well-established techniques like preprocessing, inprocessing, restarts, clause
sharing, inference techniques stronger than unit propagation, as well as clause learning and
forgetting. Generic CDCL allows us to reason about the behavior of SAT solvers independently
of the specific implementation. Additionally, the framework is a first step to explain the internals
of a modern SAT solvers in a compact and easy way. We neither model the learned clause
database explicitly, nor the clause learning procedure nor the model construction algorithms
for formula simplification techniques. Instead, we design the rules as general as possible to
be able the model techniques such as on-the-fly clause improvement [15] and lazy hyper binary
resolution [5]. By being able to simulate each step of a SAT solving technique with a set of rules,
a first understanding of the properties of search steps can be given. Hence, the transition system
is also a first step to track the single steps of a SAT solver, such that afterwards conclusions
might be drawn or to make first conjectures why current systems work well. Still, this paper
focuses on the presentation of Generic CDCL, with the main result being the proof that Generic
CDCL and, consequently, all its instances are sound. Additionally, the proofs of completeness
and confluence of Generic CDCL are presented.

The paper is structured as follows: In Section 2 we describe basic concepts of satisfiability
testing. We present Generic CDCL in Section 3, where we also prove that Generic CDCL
correctly solves the satisfiability problems, and prove further properties. In Section 4 we give an
example how an execution of a SAT solver is modelled by the presented formalism. Afterwards,
we compare Generic CDCL with related formalism in Section 5 and we conclude the paper in
Section 6.

2 Preliminaries

2.1 The Satisfiability Problem

We assume a fixed infinite set V of Boolean variables. A literal is a variable v (positive literal)
or a negated variable v (negative literal). The complement x of a positive (negative, resp.)
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literal x is the negative (positive, resp.) literal with the same variable as x. The complement
of a set S of literals, denoted with S, is defined as S = {x | x ∈ S}. Finite multisets of
clauses are called formulas, where a clause is a finite set of literals. A multiset is a set in which
elements are allowed to appear more than once. Set operators applied to multisets denote
their multiset analogs. In particular, the expression F \ {C} then denotes the multiset that is
obtained from the multiset F by deleting one occurrence of C. Sometimes, we write a clause
{x1, . . . , xn} also as the disjunction (x1∨. . .∨xn) and a formula {C1, . . . , Cn} as the conjunction
(C1 ∧ . . . ∧ Cn). The empty clause is denoted by ⊥, the empty formula by >. The set of all
variables occurring in a formula F (in positive or negative literals) is denoted by vars(F ); the
set of all literals occurring in F as elements in the set representation is denoted by lits(F ). For
instance, if x, y ∈ V, then F = {{x, y}, {y}} is a formula, its alternative representation using
logical connectives is (x ∨ y) ∧ y, vars(F ) = {x, y}, and lits(F ) = {x, y}.

The semantics of formulas is based on the notion of an interpretation I, represented by a
set of literals which does not contain a complementary pair x, x of literals. An interpretation
I is total iff for each v ∈ V either v ∈ I or v ∈ I. The satisfaction relation |= is defined as
follows: Let I be an interpretation, then I |= >, I 6|= ⊥, I |= (x1 ∨ . . . ∨ xn) iff I |= xi for some
i ∈ {1, . . . , n}, and I |= (C1 ∧ . . . ∧ Cn) iff I |= Ci for all i ∈ {1, . . . , n}. The interpretation
I is a model for the formula F iff I |= F . In the case that a formula F has a model, the
formula F is satisfiable, otherwise the formula F is unsatisfiable. We modify interpretations,
i.e. the expression I[S], where S is a set of literals that does not contain a complementary pair
of literals, denotes the interpretation defined as follows: I[S] |= x for every x ∈ S and I[S] |= y
if {y, y} 6⊆ S and I |= y.

We relate formulas by three relations: the entailment, the equivalence and the equisatisfia-
bility relation: A formula F entails a formula F ′ iff every total model of F is a model of F ′.
Two formulas F and F ′ are equivalent, in symbols F ≡ F ′, iff F entails F ′ and F ′ entails F .
Two formulas F and F ′ are equisatisfiable, in symbols F ≡sat F

′, iff either both formulas are
satisfiable or both formulas are unsatisfiable.

Let x be a literal, C be a clause in which x occurs, and D be a clause in which x occurs.
Then the clause (C ∪ D) \ {x, x} is the resolvent of the clauses C and D upon the literal x.
A linear resolution derivation from the clause C to the clause D in the formula F is a finite
sequence of clauses (Ci | 1 ≤ i ≤ n) such that C1 = C, Cn = D and Ci is a resolvent of the
clause Ci−1 and some clause in the formula F for all i ∈ {2, . . . , n−1}; the reader should observe
that F entails D and that the addition of entailed clauses to a formula preserves equivalence.

2.2 Variable Assignments and the Reduct Operator

Let J be a finite sequence of literals. In J each literal may be marked as a decision literal by
placing a dot on top like in ẋ; if a literal x is not marked, then this literal is a propagation literal.
Let J be a sequence of literals of length n. We say that literal x ∈ J iff there is a k ∈ {1, . . . , n}
such that x = xk. Let J1 = (x1, . . . , xn) and J2 = (y1, . . . , ym) be two sequences of literals; their
concatenation J1J2 is the sequence (x1, . . . , xn, y1, . . . , ym). If a finite sequence J of literals does
not contain a complementary pair of literals, then J represents an interpretation. The empty
sequence of literals is denoted by ε. As this condition is always met in this paper, we identify
sequences of literals with interpretations whenever appropriate.

The reduct of a formula F w.r.t. an interpretation J , in symbols F |J , is defined as

F |J := {C|J | C ∈ F and for every literal x ∈ C we find that x 6∈ J},

where C|J = C \ {x | x ∈ J}. Intuitively, the reduct operator expresses the state of a SAT
solver, where the formula F is the working formula and J is the working interpretation. For
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instance, let F = {{x, y}, {z}}, then F |x = {{y}, {z}}, F |z = {{x, y},⊥} and F |y z = >, where
the interpretations are written as sequences of literals. The reader should observe that the
reduct operator does not distinguish between propagation and decision literals. The properties
of the reduct operator are summarized in Lemma 1:

Lemma 1 (Reduct Operator). Let F, F ′ be formulas and x a literal.

1. If J ⊆ I, then I |= F if and only if I |= F |J .

2. I |= F |J if and only if I[J ] |= F .

3. I |= F |J if and only if there exists I ′ such that I ′(x) = I(x) for every x 6∈ J and
I ′ |= F ∧

∧
x∈J x.

4. If F ≡ F ′, then F |J ≡ F ′|J for every interpretation J .

5. F is satisfiable iff there exists a J such that F |J = >.

Proof. For details see [34, pp.10–12].

1. follows straightforward from the definition of the reduct.

2. We show both directions:

⇒ Suppose that the claim is incorrect, i.e. I[J ] 6|= F . Then there is a clause C ∈ F such that
I[J ] 6|= C. Then there is no literal x ∈ C such that 1) x ∈ J or 2) x ∈ I and x 6∈ J . We
now distinguish between two cases, and show that there is a literal x that contradicts 1)
or 2).

– C|J 6∈ F |J : Then there is a literal x′ ∈ C such that x′ ∈ J and therefore we have a
contradiction to 1).

– C|J ∈ F |J : Since I |= F |J , we know that I |= C|J . Then there is a literal x′ ∈ C|J
such that x′ ∈ I. Since x′ ∈ C, we know that x′ 6∈ J by the definition of the reduct
operator. Therefore, we have a contradiction to 2).

⇐ Let I[J ] |= F . Since J ⊆ I[J ] we know that I[J ] |= F |J by Lemma 1.1. Moreover, we
know that vars(F |J)∩ (J ∪J) = ∅, i.e. the literals in J do not occur in F |J . Consequently,
I |= F |J .

Since in both cases, we have a contradiction to the assumption that I[J ] 6|= F , we conclude that
I[J ] |= F .

3. follows straightforward from Lemma 1.2.

4. To show the claim, notice that Lemma 1.3 characterizes the reduct operator in a semantic
way. Consequently, the reduct operator cannot distinguish equivalent formulas.

5. We show both directions:

⇒ Let J = ∅. If the formula F is satisfiable, we know that the formula F |J = F is satisfiable.

⇐ Let the formula F |J be satisfiable. By Lemma 1.3 we know that there exists an interpre-
tation I ′ such that I ′ |= F ∧

∧
x∈J x. It immediately follows that I ′ |= F and hence, the

formula F is satisfiable.
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SAT-rule: F � J ;SAT SAT iff F |J = >.

UNSAT-rule: F � J ;UNSAT UNSAT iff
⊥ ∈ F |J and J contains only propagation literals.

DEC-rule: F � J ;DEC F � J ẋ iff

x ∈ vars(F ) ∪ vars(F ) and {x, x} ∩ J = ∅.

INF-rule: F � J ;INF F � J x iff

F |J ≡sat F |J x, x ∈ vars(F ) ∪ vars(F ) and {x, x} ∩ J = ∅.

LEARN-rule: F � J ;LEARN F ∪ {C} � J iff F |= C.

REMOVE-rule: F � J ;REMOVE F \ {C} � J iff F \ {C} |= C.

BACK-rule: F � J J ′ ;BACK F � J .

INP-rule: F � ε ;INP F ′ � ε iff F ≡sat F
′.

Figure 1: Transition relations of Generic CDCL. These relations apply to all formulas F and
F ′, clauses C, literals x and sequences of literals J and J ′.

3 Generic CDCL

Modern SAT solvers are rooted in the linearized DPLL [9] algorithm and consist of the following
components: termination criteria, a decision component that selects the branching literals, an
inference component that adds propagation literals to the working interpretation, a backtracking
component that rolls back wrong decisions and a formula management component that simplifies
the working formula. We maintain two data structures during modelling a modern SAT solver:
the working formula F , that is the multiset of clauses that is currently present in the SAT solver,
and the working interpretation J , which corresponds to the partial interpretation that is build
by the SAT solver. Together, these two components define the state, which is the pair F � J .
The components of the solver are modelled as a transition relation over the set of states; the
union of the rules depicted in Fig. 1 is then the transition relation of Generic CDCL. Formally,
we model the computation of modern SAT solvers by means of state transition systems as
follows:

Definition 1 (Generic CDCL). Generic CDCL is a state transition system whose sets of states
is

{F � J | F is a formula and J is a sequence of literals} ∪ {SAT,UNSAT},

whose initial state for the input formula F is init(F ) = F � ε, whose set of terminal states is
{SAT,UNSAT}, and whose transition relation ; is defined as:

; := {;SAT,;UNSAT,;DEC,;INF,;LEARN,;REMOVE,;BACK,;INP}.

The SAT-rule terminates the computation with the output SAT, if the reduct of the working
formula w.r.t. the working interpretation is the empty formula. This condition can be decided
in linear time w.r.t. the size of the working formula F . By Lemma 1.5 the working formula is
then satisfiable.
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The UNSAT-rule terminates the computation with the output UNSAT, if no model of the
working formula exists. The lack of a model is the case when a conflict occurs in the top level,
i.e. ⊥ ∈ F |J and the interpretation J contains only propagation literals. These conditions can
be decided in polynomial time, since the interpretation as well as each clause have to be checked
at most once.

The DEC-rule extends the working interpretation by an unassigned literal ẋ as a decision
literal. The variable of the decision literal must occur in the working formula.

The INF-rule extends the working interpretation by a propagation literal x, if the reducts
of the working formula w.r.t. the working interpretation and its extension are equisatisfiable.
Essentially, this rule covers unit propagation. However, adding other implied literals, as for
example finding backbone literals [33], performing look-ahead on an intermediate search node [16]
or adding unit clauses based on probing [24] and extended unit propagation [21] is also covered
by the given condition.

The BACK-rule models backtracking, as well as backjumping, assignment stack shrinking [30]
and restarts [13], by deleting outermost right literals in the working interpretation.

The LEARN-rule adds a clause C to the working formula, if this clause is entailed by the
working formula F . Deciding whether F |= C holds, is coNP-complete. Similarly to the INF-
rule, SAT solvers avoid this check by using techniques for creating the clause C that ensure
this property, as for example resolution. To the best of our knowledge, all learning techniques,
ranging from learning UIP clauses [29], bi-asserting clauses [18,35] to clause minimization [38]
use only resolution, such that all these techniques are covered by this rule.

The REMOVE-rule deletes one occurrence of the clause C of the working formula F , if
F \ {C} |= C. The question whether F \ {C} |= C holds is coNP-complete. Typically, we use
tractable algorithms to identify redundant clauses. For instance, clauses that were introduced
by the LEARN-rule but have turned out to be useless and did not participate in the elimination
of other clauses in the formula can be removed. For more details on the deletion of clauses
see [20].

The INP-rule models formula simplifications that are used in pre- and inprocessing. The rule
replaces the working formula with an equisatisfiable formula when the working interpretation
is empty. To the best of our knowledge, this way all used formula simplification techniques that
are used during preprocessing and inprocessing can be modelled [20].

Let
∗; be the reflexive and transitive closure of ;. We define x

0; x for all states x, and

x
n; z for all natural numbers n ∈ N if and only if there exists a state y such that x

n−1; y ; z.
In the next subsection we investigate the question whether Generic CDCL correctly solves the
SAT problem.

3.1 Generic CDCL is Sound

Formally, we define Generic CDCL to be sound iff for all formulas F0 we have that init(F0)
∗; SAT

implies that F0 is satisfiable and init(F0)
∗; UNSAT implies that F0 is unsatisfiable.
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Before proceeding to the soundness proof of Generic CDCL, two invariants of Generic CDCL
are studied. These invariants are presented in the proposition below: Invariant 1 states that the
rules of Generic CDCL do not change the satisfiability of the working formula, and invariant 2
states that whenever the working interpretation is of the form J1 xJ2, where x is a propagation
literal, then the reducts of the working formula w.r.t. J1 and J1 x are equisatisfiable.

Proposition 1 (Invariants). Let F0, F be formulas, J be a sequence of literals, and n ∈ N. If

init(F0)
n; F � J , then

1. F0 ≡sat F , and

2. F |J1
≡sat F |J1 x, for all sequences of literals J1, J2 and propagation literals x with

J = J1 xJ2.

Proof. The claims are proven by induction on the number of steps n. For the base case n = 0,
1. follows from F0 = F and 2. holds since the J is empty. For the induction step, assume that
the claim holds for the state F � J and suppose that F � J ;R F ′ � J ′, where

R ∈ {DEC, INF, LEARN,REMOVE,BACK, INP}.

• DEC-rule: In this case, F ′ = F and J ′ = J ẋ for some decision literal ẋ with {x, x}∩J = ∅.
1. follows since F0 ≡sat F holds by induction. 2. holds because the appended literal is a
decision literal. Formally, let J ′1, J

′
2 be literal sequences, y be a propagation literal such that

J ′ = J ′1 y J
′
2ẋ. By induction, we conclude that F |J′

1
≡sat F |J′

1 y. Hence, F ′|J′
1
≡sat F

′|J1 y.

• INF-rule: In this case, F ′ = F and J ′ = J x for some propagation literal x with
{x, x} ∩ J = ∅. 1. follows since F0 ≡sat F holds by induction. 2. follows from the
definition of the INF-rule: Consider the literal sequences J ′1, J

′
2 and a propagation literal

y such that J ′ = J ′1 y J
′
2. In the case that y = x, we know that J ′2 is the empty sequence

of literals and consequently F |J′
1
≡sat F |J′

1 y holds by the definition of the INF-rule. In the

case of y 6= x, we can conclude the claim by induction.

• BACK-rule: In this case, F ′ = F and J = J ′ J ′′. 1. follows since F0 ≡sat F by induction.
2. holds because the literal sequence J ′ is a prefix of J . Formally, let J ′1, J

′
2 be literal

sequences and y be a propagation literal such that J ′ = J ′1 y J
′
2. By induction, we conclude

that F |J′
1
≡sat F |J′

1 y, and consequently we know that F ′|J′
1
≡sat F

′|J′
1 y.

• LEARN-rule: In this case, F ′ = F ∪ {C} where F |= C and J ′ = J . 1. follows because
the addition of the entailed clause C preserves the equivalence between F and F ∪ {C}.
2. follows from the reduct operator being a semantic operator by Lemma 1.4 and therefore
F ′|J′

1
≡sat F ′|J′

1 y holds by induction for every literal sequences J ′1, J
′
2 and propagation

literals y with J ′ = J ′1 y J
′
2.

• REMOVE-rule: This case can be treated as in the LEARN-rule.

• INP-rule: In this case, F ′ ≡sat F and J ′ is the empty sequence. Consequently, 1. holds by
the definition of the INP-rule, and 2. is satisfied as J ′′ = ε.

We can now show the first main theorem in this paper.

Theorem 1 (Soundness). Generic CDCL is sound.

Proof. We divide the proof in two parts, first proving that the output SAT is correct, and then
proving that the output UNSAT is correct. Let F0, F be formulas, J be a sequence of literals
and suppose that

init(F0)
∗; F � J ; SAT(UNSAT, resp.).
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SAT. By the definition of the SAT-rule, we know that F |J = >. By Lemma 1.5, we know that
the formula F is satisfiable. From the result that the formula F is satisfiable together with the
property that the formulas F0 and F are equisatisfiable as shown in Prop. 1(1.), we conclude
that the input formula F0 is satisfiable.

UNSAT. By the definition of the UNSAT-rule, we know that ⊥ ∈ F |J and the working in-
terpretation J = (x1 . . . xn) contains only propagation literals. Since a conflict occurs, F |J is
unsatisfiable. From the result that the formula F |J is unsatisfiable and the working interpreta-
tion J contains only propagation literals we can repeatably apply Prop. 1(2.) and obtain that
the formula F is unsatisfiable. Since the formula F is unsatisfiable and the formulas F and F0

are equisatisfiable by Prop. 1(1.), we conclude that F0 is unsatisfiable.

3.2 Generic CDCL is Complete

We continue to show completeness of Generic CDCL: If the input formula F0 is satisfiable, then
init(F0)

∗; SAT and if the formula F is unsatisfiable, then init(F0)
∗; UNSAT.

Theorem 2. Generic CDCL is complete.

Proof. Suppose that the input formula F0 is unsatisfiable. Then, F0 |= ⊥ and consequently

init(F0) = F0 � ε ;LEARN F ∧ ⊥ � ε ;UNSAT UNSAT. Consequently, init(F0)
∗; UNSAT. Now,

suppose that the input formula F0 is satisfiable. Then, there is a model J = (x1 x2 . . . xn) for
the formula F0. Then, init(F0) = F0 � ε ;DEC F � (ẋ1) . . . ;DEC F � (ẋ1 ẋ2 . . . ẋn) ;SAT SAT.

Consequently, init(F0)
∗; SAT. Hence, Generic CDCL is complete.

The result is mainly of theoretical interest, as it guarantees the existence of complete in-
stantiations of Generic CDCL. In deed, not every instance of Generic CDCL is complete. In
practice, we want to have the chance to reach a final state from every reachable state, and not
just from the initial state. This property follows from confluence and completeness.

3.3 Generic CDCL is Confluent

Generic CDCL is confluent iff for every formula F it holds that if init(F0)
∗; T1 and

init(F0)
∗; T2, then there is a state T such that T1

∗; T and T2
∗; T . In particular, if Generic

CDCL is confluent and complete, then we can reach a final state in every reachable state. Note
that our definition is slightly different to the standard notion of confluence as it restrict to
reachable states.

Theorem 3. Generic CDCL is confluent.

Proof. Roughly speaking, confluence of Generic CDCL follows from its completeness and the
ability to perform restarts by the BACK-rule. Suppose that init(F0)

∗; T1 and init(F0)
∗; T2.

We have to show that T1
∗; T and T2

∗; T for some state T . Consider the case that F0 is
satisfiable. Then we know that T1 6= UNSAT and T2 6= UNSAT because Generic CDCL is sound
by Theorem 1. We distinguish between the following cases:

• T1 = F1 �J1, T2 = F2 �J2. By Prop 1 (1) it holds that F0 ≡sat F1 and F0 ≡sat F2. Hence,
F1 and F2 are satisfiable. Since Generic CDCL is complete by Theorem. 2, we know that
F1 � J1 ;BACK F1 � ε

∗; SAT and F2 � J2 ;BACK F2 � ε
∗; SAT, i.e. T = SAT.

96



Generic CDCL Hölldobler, Manthey, Philipp and Steinke

• T1 = SAT, T2 = F2 � J2. By Prop. 1 (1) it holds that F0 ≡sat F2. Hence, F2 is satisfiable.

Since Generic CDCL is complete by Theorem 2, we know that F2�J2 ;BACK F2�ε
∗; SAT.

Then, T = SAT.

• T1 = F1 � J1, T2 = SAT . This case can be shown as above.

• T1 = SAT, T2 = SAT. In this case, T = T1 = T2.

The case that F0 is unsatisfiable can be proven in a similar way.

3.4 Generic CDCL Subsumes Important SAT Solving Techniques

We now describe a few selected SAT solving techniques, and demonstrate that Generic CDCL
can adequately model these techniques.

Subsumption. For a formula F , the clause C ∈ F subsumes the clause D ∈ F iff
C ⊆ D. In this case, D can be deleted if C 6= D because F \ {D} |= D. Consequently,
F � J ;REMOVE F \ {D} � J holds for every literal sequence J . Removing subsumed clauses is
done as a preprocessing step in SAT solvers and during clause learning, for example when a
learned clause is a unit clause.

Tautologies. A clause C is a tautology if it contains a complementary pair of literals.
Every formula F entails a tautology and the REMOVE-rule in Generic CDCL subsumes this
techniques. Tautologies are eliminated during preprocessing.

Conflict-Directed Backtracking and Learning [37]. This technique is an improvement
of naive backtracking that takes the reason of the conflict into account. Consider the state
F � J ẋ J ′ and a clause C ∈ F where C|J ẋ J ′ = ⊥. The clause C is the conflict clause. If
there is a linear resolution derivation from the conflict clause C to a clause D in the formula F
such that D|J is the unit clause y, the technique rewrites the state F � J ẋ J ′ into the state
F ∪ {C} � J y. Conflict-directed backtracking and learning can be simulated by the following
transition steps: F � J ẋ J ′ ;BACK F � J ;LEARN F ∪ {D} � J ;INF F ∪ {D} � J y.

Unit Propagation. A clause that contains a single literal is a unit clause. Unit propagation
adds the propagation literal x to the literal sequence J , whenever the reduct of the working
formula w.r.t. J contains the unit clause (x). Since F |J |= x, we know that F |J ≡sat F |J x and
consequently the INF-rule subsumes unit propagation.

Pure Literal. A literal x is pure in the formula F , if x ∈ lits(F ) and x 6∈ lits(F ). For pure
literals, it holds that F ≡sat F |x and, therefore, whenever a literal x is pure in the formula F |J for
some literal sequence J , Generic CDCL can add the pure literal to the working interpretation:
F � J ;INF F � J x.

On-the-fly Clause Improvement [15]. Given a formula (F ∧ C ∧D) such that C ⊗D
subsumes the clause C, self-subsuming resolution produces the formula (F ∧ (C ⊗ D) ∧ D).
It is straight-forward to see that the result of self-subsuming resolution can obtained by the
REMOVE- and LEARN-rule.
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Variable Elimination [10,39]. For two formulas F1, F2 and a variable v, the set of all non-
tautological resolvents of a clause in the formula F1 with a clause in the formula F2 upon the
variable v is denoted by F1 ⊗v F2. Given an input formula F and a variable v ∈ V, variable
elimination adds all resolvents of the input formula F upon the variable v, and afterwards
deletes all clauses containing the literals v or v. Variable Elimination can be applied when
the working interpretation is empty: The addition of resolvents preserves the equivalence of
formulas and the LEARN-rule is used. Afterwards, the clauses containing the literals v or v are
eliminated, which is done with the INP-rule.

Blocked Clause Elimination [19]. A clause C is blocked in the formula F if it contains
a literal x such that all resolvents of the clause C and clauses D ∈ F with x ∈ D upon x are
tautological. Blocked clauses are removed from a formula during pre- and inprocessing. If C
is blocked in F , then F ≡sat F \ {C} and, therefore, the INP-rule subsumes the blocked clause
elimination technique.

Extended Resolution [2]. A variable v is fresh in a certain context, if it does not occur
in a formula. Extended resolution adds a definition of a fresh variable v to the formula, i.e.
given an input formula F , two literals x, y ∈ lits(F ) and the fresh variable v, the technique
produces the formula F ′ = F ∧ (v∨x∨ y)∧ (x∨ v)∧ (y∨ v). We can model extended resolution
as follows: First, we perform a restart such that the INP-rule is applicable. Afterwards, we
add the clauses from extended resolution and construct the original working interpretation by
applying the INF- and DEC-rule. Note that these steps are possible, since extended resolution
uses fresh variables, and no clauses are removed, such that all propagated literals can be added
to J again after the restart.

Bounded Variable Addition [25]. This technique adds a partial definition of a fresh vari-
able v to the formula: First, a fresh variable v is introduced like in extended resolution, resulting
in the intermediate formula G = F ∧ (v∨x∨y)∧ (v∨x)∧ (v∨y), where x, y ∈ lits(F ). Next, all
clauses C,D ∈ G\{(v∨x), (v∨y)} which have a common subclause E such that C = (x∨E) and
D = (y ∨E) are replaced by the new clause (v ∨E), G := (G \ {(x ∨ E), (y ∨ E)}) ∪ {(v ∨ E)}.
Finally, the formula F ′, the result of applying bounded variable addition, is obtained from the
formula H by removing the clause (v ∨ x ∨ y). Bounded Variable Addition is applicable when
the working interpretation is empty and can be simulated in terms of the INP-rule.

4 A Realistic SAT Trace as Generic CDCL

We will illustrate the interplay of these components in form of a trace of a modern SAT solver
and use the following notation: the double underlined literals are literals that are mapped to ⊥
by the working interpretation, and underlined clauses are satisfied by the working interpretation.
Let {a, b, c, . . . , g} be a set of variables and consider the formula F and the empty literal sequence
ε, that form an initial state:

I = ε

F =
(
a ∨ c

)
∧
(
¬a ∨ ¬c ∨ d

)
∧
(
¬c ∨ e

)
∧
(
b ∨ ¬c

)
∧
(
¬b ∨ ¬d ∨ ¬c

)
As a preprocessing step, we apply blocked clause elimination and find that the clause (a ∨ c)
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has the blocking literal a. Hence, we apply the INP-rule and obtain:

I = ε

F =
(
¬a ∨ ¬c ∨ d

)
∧
(
¬c ∨ e

)
∧
(
b ∨ ¬c

)
∧
(
¬b ∨ ¬d ∨ ¬c

)
Now, suppose the decision component is initialized such that it decides the literals in alpha-
betically ordering and always selects the positive literal. First, the literal a is selected and we
obtain the following state after applying the DEC-rule:

I =
(
ȧ
)

F =
(
¬a ∨ ¬c ∨ d

)
∧
(
¬c ∨ e

)
∧
(
b ∨ ¬c

)
∧
(
¬b ∨ ¬d ∨ ¬c

)
We then select the literal b and obtain the following state after applying the DEC-rule:

I =
(
ȧ ḃ
)

F =
(
¬a ∨ ¬c ∨ d

)
∧
(
¬c ∨ e

)
∧
(
b ∨ ¬c

)
∧
(
¬b ∨ ¬d ∨ ¬c

)
Then, we select the literal c and obtain the following state after applying the DEC-rule:

I =
(
ȧ ḃ ċ

)
F =

(
¬a ∨ ¬c ∨ d

)
∧
(
¬c ∨ e

)
∧
(
b ∨ ¬c

)
∧
(
¬b ∨ ¬d ∨ ¬c

)
Now, we can infer the literals d and e by unit propagation. Unit propagation is subsumed by
the INF-rule, i.e. we apply the rule twice, resulting in the following state:

I =
(
ȧ ḃ ċ d e

)
F =

(
¬a ∨ ¬c ∨ d

)
∧
(
¬c ∨ e

)
∧
(
b ∨ ¬c

)
∧
(
¬b ∨ ¬d ∨ ¬c

)
The clause (¬b∨¬d∨¬c) cannot be satisfied any more, i.e. the formula together with the made
decisions is unsatisfiable. Consequently, we apply conflict-directed backtracking and learning as
follows: First, we compute a linear resolution derivation in the reason clauses from the conflict
clause: (¬b ∨ ¬d ∨ ¬c)⊗ (¬a ∨ ¬c ∨ d) = (¬a ∨ ¬b ∨ ¬c). We minimize the resulting clause by
self-subsuming resolution, i.e. (¬a ∨ ¬b ∨ ¬c)⊗ (b ∨ ¬c) = (¬a ∨ ¬c) =: C. Then, the clause C
is added to the formula with the LEARN-rule. Finally, we apply the BACK-rule such that the
clause C becomes a unit. Moreover, we eliminate the first clause in F since C subsumes the
clause, i.e. we apply the REMOVE-rule.

I =
(
ȧ¬c

)
F =

(
¬c ∨ e

)
∧
(
b ∨ ¬c

)
∧
(
¬b ∨ ¬d ∨ ¬c

)
∧
(
¬a ∨ ¬c

)
Now, the reduct of the working formula w.r.t. the working interpretation is empty since each
clause is satisfied by the working interpretation. Hence, the SAT-rule is applicable and we
terminate the computation with the answer SAT.

5 Related Work

Several attempts have been made to formalize sequential SAT solvers in terms of transition
systems or proofs calculi: Abstract DPLL [31], Linearized DPLL [1], and Rule-based SAT
solver description [27]. For very similar problem types and their solvers, SAT modulo theory
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solvers, the formalism DPLL(T) has been proposed [32]. In general, these formalizations are
based on a notion of state like our formalism Generic CDCL.

However, these formalizations cannot adequately model recent SAT solvers: For instance,
Linearized DPLL does not model the SAT solver MiniSAT, because Linearized DPLL restricts
decision literals to occur in the working formula, but the solver MiniSAT can also select the
complements of such literals. Additionally, Linearized DPLL does not model formula simpli-
fication techniques such as blocked clause elimination, or probing-based inference techniques.
Similarly, Abstract DPLL and the Rule-based SAT solver description [27] do not model formula
simplifications that changes the semantics of formulas, i.e. the set of models, like blocked clause
elimination. Marić highlighted the implementation of clause learning techniques in his Rule-
based SAT solver description [27], but it does not include recent developments such as clause
strengthening. All these formalizations consider DPLL-based SAT solvers, but the ancient pure
literal rule is not subsumed in these systems. While DPLL(T) models the pure literal rule, this
formalism does not cover formula simplifications, or inference techniques that are more powerful
than unit propagation. In contrast, to the best of our knowledge, Generic CDCL subsumes all
recent SAT techniques.

In [20] Jarvisalo et al. developed a formal system to model clause learning, forgetting and
formula simplification techniques to understand the side-effects of the combination of different
rules. In particular, they construct the model for an initial formula by characterizing the state
of SAT solvers in terms of a set of redundant clauses, a set of irredundant clauses and a stack
of clauses.

The interplay of clause sharing and formula simplification techniques in parallel SAT solvers
was analyzed in [26], where the state of a sequential SAT solver was modelled just as the working
formula. We believe that Generic CDCL is an important fragment to understand sequential
SAT solvers with inprocessing and their cooperation in the parallel-portfolio setting with clause
sharing.

6 Conclusion

The propositional satisfiability problem is of great practical interest and can be efficiently
answered by modern SAT solvers like Riss, Lingeling or MiniSAT. Today, modern SAT solvers
are highly tuned proof procedures with many advanced techniques. Therefore, it is desirable
to investigate SAT solving techniques in combination with each other and to abstract from
implementations.

In this paper, we developed Generic CDCL, a formalism that models the computation of
modern SAT solvers in terms of a state transition system, where each transition rule abstracts
a component in a SAT solver. In particular, the transition rules INF and INP model formula
simplification techniques like blocked clause elimination and inference techniques such as the
pure literal rule. We have examined invariants in Generic CDCL and have shown that Generic
CDCL is sound, complete and confluent. In contrast to previous work on formalizations of
SAT solvers, we can model all recent techniques. The findings add to our understanding of the
interplay of inprocessing techniques with the other components of SAT solvers.

The presented formalism provides a small set of rules that might prove to be particularly
useful for teaching SAT solving and we believe Generic CDCL deepens the understanding more
than presenting pseudo code and algorithm implementations only. As future work, we plan
to investigate termination strategies and the question how we can bridge the gap between the
implementation and the abstract rules further. In particular, we are interested in describing
the clause learning and inference techniques closer to the implementation.
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