
A Multi-Modal Dependent Type Theory for

Representing Data Accessibility in a Network

Giuseppe Primiero

FWO- Flemish Research Foundation
Centre for Logic and Philosophy of Science

Ghent University, Belgium
IEG, Oxford, UK

giuseppe.primiero@ugent.be

Abstract

In this paper we present a multi-modal polymorphic constructive type theory for a
computational interpretation of programs equipped with locations for data accessibility in
the context of distributed processing.

1 Introduction

Constructive modalities ([2, 1]) and modal type theories ([9, 8]) have recently been studied
to give operational versions of modal logics. Their interpretation of programs via the Curry-
Howard isomorphism allows to reason about distributed and staged computation ([4, 3, 5, 6]).
Two major approaches to modal logics for distributed computing can be recognised: the syntac-
tical treatment of a type theoretical language in [3] to establish global/local validity of modal
propositions; and the semantic approach of an intuitionistic modal logic ML5 for Grid Com-
puting in [5, 6], enriched with the concept of location derived from modalities. Varying on the
former theme, a polymorphic constructive type theory with judgemental (rather than propo-
sitional) modalities is developed in [10] for studying derivability from open assumptions in a
constructive setting. In this language, modalities express conditional validity of propositions
in terms of contextual extensions for dependent types. In this paper we present the exten-
sion to multi-modalities in structured contexts to explore reasoning about ordered distributed
computing.

2 System

Contextual dependency provides all that is needed to express syntactically the notion of truth
relativized to states typical of modal logics. Dependent judgements of the form a :A[Γ], with
Γ = [x1 :A1, . . . , xn :An] and a a proof of A, hold under appropriate substitutions a : A[x1/a1 :
A1, . . . , xn/an :An], corresponding to β-reductions for proof terms and the explicit evaluation
at run-time of the codes from which a program depends. To formulate partially evaluated
specifications, i.e. codes missing their β-redex, requires the admission of separate constructors
for the types expressed in context . We shall use a set T built from indexed term constructors
ai, bj , . . . and variable constructors xi, yj , . . . , such that each is a constructor for an appropriate
type A,B, . . . and i, j ∈ G range over an enumerable set G of distinct locations. An indexed
term constructor ai for a type A is intended as the program for specification A with signature
i; ai :A says that A is presented with an α-term a signed by its issuer i; to ensure that this
is a canonical proof-term that can be used under any other signature, we enrich the language
with an appropriate modality 2i∈G(A true). An indexed variable constructor xi for a type A,

A. Simpson (ed.), PSPL 2010 (EPiC Series, vol. 12), pp. 17–22 17

A Multi-Modal Type Theory for Representing Data Accessibility . . . Giuseppe Primiero

on the other hand, is intended as the admissible program for specification A with signature
i: xi :A says that a type A is admissible from source i, but cannot be indexed at any other
source. To express this we enrich the language with an appropriate modality 3i∈G(A true).
This explanation makes the necessity judgement 2(A true) equivalent to a : A[∅], i.e. where
all contextual expressions have been evaluated and the related code program is valid from any
accessible location; the possibility judgement 3(A true) is equivalent to a :A[Γ], where Γ stands
for a set of programs using code admissible at some locations as specified by the relevant indices
included in Γ. Our starting point of view is therefore that assertion conditions in their modal
translation correspond to information on the internal structure of a running program.

2.1 Language

Our set K of kinds includes two elements: K := {(A,B, . . . type); (A,B, . . . typeinf)}; type is the
kind of all valid specifications defined by term constructors (executed program), and typeinf is
the kind of all information chuncks defined by variable constructors (admissible commands) used
to define further elements of the kind type. An expression xi :A is an assumption with xi in the
set of terms and A typeinf , declaring that instructions to execute a program for A are available
at source i. A context Γ is a finite sequence of assumptions [xi :A, . . . , xn :N] all with distinct
subjects, expressing a network to execute those routines. A judgement J [xi : A, . . . , xn : N]
says that a program – as specified in J – is executed provided each of the routines A, . . . , N
is called at the appropriate location, each call depending on the forecoming ones in the same
Γ. Each xi : α depends on the assumptions x1 : α up to xi−1 : α (with α a metavariable for
possibly distinct types). If Γ = {xi :A, . . . , xn :N}, an extended context ∆ = {Γ, xn+1 :N + 1}
is equivalent to ∆ = {xi :A, . . . , xn+1 :N + 1}. When the formulation of a fresh declaration
xn+1 :N + 1 is meant to be independent of the order in Γ, we use a separator Γ | xn+1 :N + 1.
The rules for signed expressions in the kind type are (omitting elimination rules for brevity):

ai :A
Type Formation

A type

ai :A
I⊥

¬A→ ⊥

ai :A bj :B
I∧

(ai, bj) :A ∧B
ai :A bj :B[A type]

I →
ai(bj) :A→ B

a1 :A, . . . , an :A bj :B[ai :A] λ((ai(bj))A,B)
I∀

(∀ai :Ai)B type

a1 :A, . . . , an :A bj :B[ai :A] (< ai, bj >,A,B)
I∃

(∃ai :A)B type

Global Validity Rule
Γ, ai :A,∆ ` A type.

Γ ` B type Γ ` A type
Weakening

Γ | ai :A ` B type.

Γ | ai :A, bj :B ` C type Γ ` bj :B
Contraction

Γ | ai :A ` C type.

Γ | ai :A, bj :B ` C type
Exchange

Γ | bj :B, ai :A,` C type

The Global Validity Rule uses premise generation to say that if a program for A is generated
at source i, its validity is global to the relevant G accessible from i. This property makes it
possible to validate the other structural rules for expressing modularity. The rules for signed
expressions in the kind typeinf are:

¬(A→ ⊥) type
Typeinf Formation

A typeinf

A typeinf bj :B[xi :A]
Functional abstraction

((xi)bj) :A ⊃ B typeinf

18

A Multi-Modal Type Theory for Representing Data Accessibility . . . Giuseppe Primiero

A typeinf bj :B[xi :A] ai :A
β − conversion

(x(bj))(ai) = b[a/x] :B type[a/x]
λ((a1−i(bj))A,B) (bj)[ai := a]

α− conversion
(ai(bj)) :A→ B type

Local Validity Rule
Γ, xi :A,∆ ` A typeinf

Γ ` B typeinf xi :A ` A typeinf
Weakening

Γ | xi :A ` B typeinf .

Γ | xi :A, yj :B ` C typeinf Γ ` yj :B
Contraction

Γ | xi :A ` C typeinf

Γ | xi :A | yj :B ` C typeinf
Exchange

Γ | yj :B | xi :A,` C typeinf

The Local Validity Rule says that the execution of a program for A depending on source i makes
its validity bounded (starred) to that point in G, until discharged (by β-conversion). Notice
that in this case, validity of the structural rules is restricted to assumptions that are not in a
relation order within a context.

2.2 Multi-Modalities

The set of modal judgements M for any i ∈ G is defined by the following modal formation
rules:

ai :A
2− Formation

2i(A true)

xi :A
3− Formation

3i(A true)

Context extension mimicks accessibility on worlds, so that judgemental modal operators express
terms executing somewhere or everywhere, with respect to locations. Contexts, as formal
counterparts of networks, are disegned according to the relevant signatures. A context Γi

is a context signed for i iff any declaration in Γ has signature i and all have distinct subjects
{A, . . . , N} ∈ typeinf . 2i(A true) is a modal premise generated by 2-Formation from xi[/ai] :A
with xi, ai ∈ T , and A type; a modal premise is the declaration that A is valid for any extension
of context Γi. 3i(A true) is a modal assumption generated by 3-Formation from xi :A with
xi ∈ T and A typeinf , declaring that A is a locally valid routine in some extension of context
Γi. For any context Γi, 2iΓ is given by

⋃
{2i(A true) | for all A ∈ Γ}; 3iΓ is given by⋃

{◦i(A true) | ◦ = {2,3} and 3i(A true) for at least one A ∈ Γ}. A signed (modal) context
◦Γi can be extended by a differently signed (modal) context ◦∆j . Modal judgements derivable
from multi-signed contexts are defined as follows:

2k(A true) iff for all Γj ∈ Context, ∅ | 2jΓ ` 2k(A true), where j =
⋃
{1, . . . , k − 1} ∈ G;

3k(A true) iff for some Γi,∆j ∈ Context,2iΓ | 3j∆ ` 3k(A true),
where j =

⋃
{1, . . . , k − 1} ∈ G.

A multi-modal context Σi,j is a context extension

◦iΓ | ◦j∆ = {◦i(A true) . . . , ◦i(N true), ◦j(O true)};

(◦ = {2;3} and Σi,j is abbreviated as ΣG). A context extension ◦iΓ | ◦j∆ is admissible if, for
any judgement J ∈ ∆ such that J = A typeinf , Γ 0 (A→ ⊥).

The type-theoretical expression 3GΣ ` J is obtained by 2iΓ | 3j∆ ` J and expresses the
local validity of J from source i and j in view of the information that source j makes available
when accessed from source i and which can be lost when accessing source k:

19

A Multi-Modal Type Theory for Representing Data Accessibility . . . Giuseppe Primiero

Γi | xj :A ` B true∗

multiple I3
3GΣ ` 3i,j(B true)

2iΓ | 3j∆ ` 3i,j(A true) 3j∆, xk :A ` 3j,k(B true)
multiple E3

Γi | ∆j ` B true∗

Extending Γi with information accessible locally at j, validity holds by calling upon relevant
sources (i.e. at their intersection). Elimination starts from a similarly derivable judgement
3i,j(A true) to infer its variable constructor, then deriving local validity of B without the
additional location of A.

The type-theoretical expression 2GΣ ` J is obtained by 2iΓ | 2j∆ ` J and expresses the
global validity of J from source i and j, in view of the information that source j makes available
when accessed from source i and which persists when accessing any other source k:

Γi | xj :A ` A true∗ 2iΓ, [xj/aj] :A ` A true
multiple I2

2GΣ ` 2G(A true)
2iΓ | aj :A ` 2i,j(A true) 2G(A true) | 2k∆ ` 2G(B true)

multiple E2
Γi | aj :A,∆k ` B true

I2 turns local validity into global validity by instantiation of all premises (execution of codes).
Elimination starts from a similarly derived 2G(B true) to decompose its locations.

2.3 Properties

Inference from xi :A to 3i(A true) says that if A is admissible in the system, then a program
can be executed using a subroutine for A at a given location. Considering a single node in
a network, Reflexivity holds; admitting G = {1, . . . , n}, n > 1, a basic requirement is that
processing happens in a strictly ordered way, then (ordered) Transitivity is enforced: if a
process at k takes compuational information J at j, and J uses processual information J ′ at i,
then the process at k also uses J ′ at i (for (i < j < k ∈ G)). Symmetry for such relation is not
admitted.

xi :A ` A true∗

Reflexivity
Γ, xi :A,∆ ` 3i(A true)

xi :A ` A true∗ 3j(B true)[3i(A true)] 3k(B true)[3j(B true)]
Transitivity

3i(A true) ` 3k(B true)

β-conversion is reformulated as 2-Import to enforce execution of partially evaluated processes,
obtained by an instance of the Premise Rule and 2-Formation; 3-Import is a modal version of
abstraction on terms expressing the formulation of processes that can be used at their sources
at runtime:

Γi, xj :A ` B true∗ aj :A ` A true
2 Import

2iΓ, aj :A ` 2i,j(B true)
2iΓ, aj :A ` 2i,j(B true) xj :A ` A true∗

3 Import
2iΓ,3j(A true) ` 3i,j(B true)

If we force the order relation and use accessibility to a new location in the first premise of
3-Import, Common Seriality is satisfied, which says that each staged program can be traced
back to some processual information:

20

A Multi-Modal Type Theory for Representing Data Accessibility . . . Giuseppe Primiero

2iΓ, aj :A ` 2k(B true) B true∗[xj :A]
Common Seriality

2iΓ,3j(A true) ` 3k(B true)

Transmission of processual information is enforced by convergence (from which symmetry can
be obtained as a special case): if there is a program executed at i and j uses such process (for
the usual i < j and using Common Seriality), then the information used at j is executable at i
(Convergence satisfies Semi-Adjunction or Seriality for the monomodal B):

2iΓ ` A true xi :A ` 3j(A true)
Convergence

2iΓ, xi :A ` 3j(A true)

Derivability under 2nΣ allows admissibility of 2k(A true) by any Γi,∆j ∈ 2nΣ and i < j < k ∈
G, from which follows Upper Inclusion: if a program is actually executed in a network, then it
can be accessed from any location within that network; Lower Inclusion expresses accessibility
of executed programs at any lower admissible location in G (accessibility of the lower point
considered is satisfied by Convergence):

2GΣ ` 2k(A true) 2i,jΣ | ak :A ` 2G(A true)
Upper Inclusion

2GΣ ` 2i,j(A true)
2iΓ | 2j∆ ` 2i,j(A true) 2i,jΣ ` 2k(A true)

Lower Inclusion
2GΣ ` 2k(A true)

By Inclusion, validity of a program implies its admissibility at each location (which makes easy
to validate forms of Equivalence and Union). By the multimodal version of 21,2-Formation, we
can instantiate ordered iteration, which gives us an equivalent of S4: the ascending part says
that if a program for A is executed at k using processes at i, j, then the execution of program
for A at i, j is accessible at k; the descending part says that if a program for A is executed
at k using processes at i, j, then the execution of a program for A at k is accessible at i, j (a
sort of code mobility without seriality, see [7]). This is easily derivable from Convergence and
β-reduction.

2iΓ | 2j∆ ` 2k(A true)
Ascending Iteration

2GΣ ` 2k(2i,j(A true))
2iΓ | 2j∆ ` 2k(A true)

Descending Iteration
2GΣ ` 2i,j(2k(A true))

3 Conclusion

We have presented a polymorphic modal type theory for reasoning about distributed computing.
Computationally, values of 2G(A true) is everywhere accessible code and values of 3G(A type)
is locally accessible code. Local validity and completeness are provable generalizing from the
monomodal case presented in [10]. Code sources are ordered as to mimick their functional
aspect and the modal interation simulates the validity of code at distinct locations.

References

[1] N. Alechina, M. Mendler, V. de Paiva, and E. Ritter. Categorical and Kripke Semantics for
Constructive S4 Modal Logic. In Proceedings of the 15th International Workshop on Computer
Science Logic, volume 2142 of Lecture Notes In Computer Science, pages 292 – 307, 2001.

21

A Multi-Modal Type Theory for Representing Data Accessibility . . . Giuseppe Primiero

[2] G.M. Bierman and V. de Paiva. On an intuitionistic modal logic. Studia Logica, (65):383–416,
2000.

[3] R. Davies and F. Pfenning. A modal analysis of staged computation. Journal of the ACM,
48(3):555–604, 2001.

[4] J. Moody. Modal logic as a basis for distributed computation. Technical Report CMU-CS-03-194,
School of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, USA, 2003.

[5] T. Murphy. Modal Types for Mobile Code. PhD thesis, School of Computer Science, Carnegie
Mellon University, 2008. CMU-CS-08-126.

[6] T. Murphy, K. Crary, and R. Harper. Type-Safe Distributed Programming with ML5, volume 4912
of Lectures Notes in Computer Science, pages 108–123. Springer Verlag, 2008.

[7] T. Murphy, K. Crary, R. Harper, and F. Pfenning. A symmetric modal lambda calculus for
distributed computing. In H. Ganzinger, editor, Proceedings of the 19th Annual Symposium on
Logic in Computer Science (LICS’04), pages 286–295. IEEE Computer Society Press, 2004.

[8] A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type theory. ACM Transactions on
Computational Logic, 9(3):1–48, 2008.

[9] F. Pfenning and R. Davies. A judgemental reconstruction of modal logic. Mathematical Structures
in Computer Science, 11:511–540, 2001.

[10] G. Primiero. A contextual type theory with judgemental modalities for reasoning from open
assumptions. In Logique & Analyse. Forthcoming (2012).

22

	Introduction
	System
	Language
	Multi-Modalities
	Properties

	Conclusion

