Beating the Productivity Checker
Using Embedded Languages

Nils Anders Danielsson
University of Nottingham

Abstract

Some total languages, like Agda and Coq, allow the use of guarded corecursion to
construct infinite values and proofs. Guarded corecursion is a form of recursion in which
arbitrary recursive calls are allowed, as long as they are guarded by a coinductive con-
structor. Guardedness ensures that programs are productive, i.e. that every finite prefix
of an infinite value can be computed in finite time. However, many productive programs
are not guarded, and it can be nontrivial to put them in guarded form.

This paper gives a method for turning a productive program into a guarded program.
The method amounts to defining a problem-specific language as a data type, writing the
program in the problem-specific language, and writing a guarded interpreter for this lan-
guage.

1 Introduction

When working with infinite values in a total setting it is common to require that every value
is productive (Sijtsma/[1989): even though a value is conceptually infinite, it should always be
possible to compute the next unit of information in finite time. The primitive methods for
defining infinite values in the proof assistants Agda and Coq are based on guarded corecursion
(Coquand [1994), which is a conservative approximation of productivity for coinductive types.
The basic idea of guarded corecursion is that “corecursive calls” may only take place under
guarding constructors, thus ensuring that the next unit of information—the next constructor—
can always be computed. For instance, consider the following definition of nats n, the stream of
successive natural numbers greater than or equal to n (—_ is the cons constructor for streams):

nats : Stream
nats n = n nats (suc n)

This definition is guarded, and has the property that the next natural number can always be
computed in finite time. As another example, consider bad:

bad : Stream
bad = tail (zero bad)

This “definition” is not guarded (due to the presence of tail), nor is it productive: bad is not
well-defined. Finally consider the following definition of the stream of natural numbers:

nats : Stream
nats = zero map suc nats

This definition is productive, but unfortunately it is not guarded, because map is not a con-
structor. In fact, many productive definitions are not guarded, and it can be nontrivial to find
equivalent guarded definitions.

The main contribution of this paper is a technique for translating a large class of productive
but unguarded definitions into guarded definitions. The basic observation of the technique is

34 E. Komendantskaya, A. Bove, M. Niqui (eds.), PAR-10 (EPiC Series, vol. 5), pp. 34

Beating the Productivity Checker Using Embedded Languages Danielsson

that many productive definitions would be guarded if some functions were actually constructors.
For instance, if map were a constructor, then nats would be guarded. The technique then
amounts to defining a problem-specific language as a data type which includes a constructor
for every function like map, implementing the productive definitions in a guarded way using
this language, and implementing a guarded interpreter for the language. Optionally one can
also prove that the resulting definitions satisfy their intended defining equations, and that these
equations have unique solutions.

The technique relies on the use of data types defined using mixed induction and coinduction
(see Section , S0 it requires a programming language with support for such definitions. The
examples in the paper have been implemented using Agda (Norell 2007; |Agda Team|2010),
a dependently typed, total' functional programming language with good support for mixed
induction and coinduction. The supporting source code is at the time of writing available to
download (Danielsson|2010a).

Before we continue it may be useful to state some things which are not addressed by the

paper:

e The paper’s focus is on establishing productivity, not on representing non-productive def-
initions, nor on making non-productive definitions total by restricting their types (Bertot
2005).

e No attempt is made to automate the technique: as it stands it provides a manual, some-
what ad hoc method for getting productive definitions accepted by a system based on
guarded corecursion.

The rest of the paper is structured as follows: Section[2]discusses induction and coinduction
in the context of Agda, Sections (as well as Appendix introduce the language-based
approach to productivity through a number of examples, Section [9] discusses related work, and
Section [10] concludes.

2 Mixed Induction and Coinduction

This section gives a quick introduction to Agda, in particular to its support for mixed induction
and coinduction. For more details, see Danielsson and Altenkirch| (2010, Section 2).
In Agda the type of infinite streams can be defined as follows:

data Stream (A : Set) : Set where
A (Stream A) Stream A

This definition states that Stream A is a Set (“type”) with a single (infix) constructor __ of
type A (Stream A) Stream A. The inclusion of in the type of __ makes Stream A coinductive;
without it the type would be empty. You should read (Stream A) as “delayed stream of As”—
the function : Set Set is analogous to the suspension type constructors which are sometimes
used to introduce non-strictness in strict languages (Wadler et al.|1998), and closely related to
the domain-theoretic notion of lifting. However, Agda programs are required to be total.

We can construct infinite values by guarded corecursion. For instance, we can define a
function which combines two streams in a pointwise manner as follows:2

LAgda is an experimental system with neither a formalised meta-theory nor a verified type checker, so take
words such as “total” with a grain of salt.

2The notation {A B C' : Set} means that zipWith takes three implicit arguments A, B and C, all of type
Set. These arguments do not need to be given explicitly if Agda can infer them.

35

Beating the Productivity Checker Using Embedded Languages Danielsson

zipWith : {A B C : Set} (A B C) Stream A Stream B Stream C
zipWith f (x xs) (y ys) = faxy zipWith f (zs) ((ys)

This definition uses the coinductive delay constructor _ (sharp)? and the force function (flat):

_:{A: Set} A A
c{A: Set} A A

Agda views zipWith as guarded, because there is no non-constructor function between the left-
hand side and the corecursive call, and there is at least one use of the guarding coinductive
constructor _. This constructor has special status: it is treated as a constructor by Agda’s
productivity checker, but may not be used in patterns.? Instead one can use the force function:
(z) reduces to z.

As another example, consider the following definition of equality—bisimilarity—for streams
(which makes use of the fact that constructors can be overloaded):

data _ {A : Set} : Stream A Stream A Set where
__:(z : A) {xsys : (Stream A)} (zs ys) © xs © ys

This definition states that two streams are equal if their heads are identical and their tails
are equal (coinductively). Note that the elements of this type are equality proofs. We can
establish equalities by constructing proofs using guarded corecursion. For instance, we can
prove symmetry as follows:

sym : {A : Set} {xs ys : Stream A} xs ys ys xs
sym (v ms) = o sym (9)

(Note that ags is an ordinary variable, albeit perhaps with an unusual name.)

Let us now consider a definition which uses both induction and coinduction. The type
SP A B of stream processors (Hancock et al.|2009)—representations of programs taking streams
of As to streams of Bs—can be defined as follows:

data SP (A B : Set) : Set where
put : B (SPAB) SPAB
get : (A SPAB) SPAB

Here put b sp is intended to output b and continue with sp, while get f is intended to
read an element o and continue with f a. You can see the type as the nested fixpoint®
X.Y.B X + (A Y)—in fact, all (non-mutual) data types in the paper can be seen as
nested fixpoints of the form X. Y. F X Y (and mutually defined data types can be merged by
adding an index). Note that the recursive argument of put is delayed (coinductive), whereas the
recursive argument of get is not. This means that we can have an infinite number of consecutive
put constructors, but only a finite number of consecutive gets; definitions such as the following
one are not guarded and not accepted:

sink : {AB : Set} SPAB
sink = get (A _ sink)

3The prefix operator _ is the most tightly binding operator in this paper; ordinary function application binds
tighter, though.

4This is not entirely true in the current version of Agda, but is likely to be true in the future.

5This is not quite correct in Agda (Altenkirch and Danielsson||2010), but for the purposes of this paper the
differences are irrelevant.

36

Beating the Productivity Checker Using Embedded Languages Danielsson

The definition of sink is not problematic in and of itself (assuming that it is not evaluated
too eagerly). However, by ruling out such definitions we make other definitions possible, for
instance the following one, which gives the semantics of a stream processor:

_:{AB: Set} SP AB Stream A Stream B
put b sp as =10 (sp as)
get f (a as) = fa (as)

This function is accepted by Agda because it is defined using a lexicographic combination of
guarded corecursion and structural recursion. In this particular example the first component
of the lexicographic product is the “guardedness”, and the second component is the inductive
structure of the stream processor:

e In the first clause the corecursive call is guarded. The stream processor is not structurally
smaller, due to the use of the force function (), but this is irrelevant.

e In the second clause the corecursive call is not guarded, but there is no non-constructor
function between the left-hand side and the corecursive call, so we say that “guardedness
is preserved”. On the other hand, the stream processor argument is strictly structurally
smaller (f z is smaller than get f for any z).

Armed with the knowledge that there can only be a finite number of consecutive get constructors
we conclude that, when evaluating sp as, we must eventually reach the first clause. At this
stage we can immediately inspect the head element of the output stream, because the second
clause does not introduce any interfering destructors.

As a final example, consider filter, which is not accepted by Agda:

filter : {A : Set} (A Bool) Stream A Stream A
filter p (x zs) with p «

filter p (x zs) | true = z filter p (@s)

filter p (x zs) | false = filter p (xs)

(Here the with construct is used to pattern match on p z.) The first corecursive call is guarded,
but in the last clause the call is not guarded, and nothing is structurally smaller, so this function
is not accepted.

The explanations above should suffice to understand the definitions in this paper—in fact,
most definitions use less complicated recursion principles than the one used by _. Readers
who want to know more about Agda’s criterion for accepting a function as total can refer to
Danielsson and Altenkirch| (2010, Section 2.5).

Before we continue note that, in order to reduce clutter, the declarations of implicit argu-
ments have been omitted in the remainder of the paper.

3 Making Programs Guarded

As noted in the introduction guardedness is sometimes an inconvenient restriction: there are
productive programs which are not syntactically guarded. This section introduces a language-
based technique for putting definitions in guarded form.

Consider the following definition of the stream of Fibonacci numbers:

fib = Stream
fib = 0 zipWith _+_ fib (1 fib)

37

Beating the Productivity Checker Using Embedded Languages Danielsson

While the definition of fib is productive, it is not guarded, because the function zip With is not
a constructor. If zipWith were a constructor the definition would be guarded, though, and this
presents a way out: we can define a problem-specific language which includes zipWith as a
constructor, and then define an interpreter for the language by using guarded corecursion.

A simple language of stream programs can be defined as follows:®

data Streamp : Set Set; where
— : A (Streamp A) Streamp A
zipWith : (A B C) Streamp A Streamp B Streamp C

Note that the stream program argument of __ is coinductive, while the arguments of zipWith
are inductive; a stream program consisting of an infinitely deep application of zipWiths would
not be productive.

Stream programs will be turned into streams in two steps. First a kind of weak head normal
form (WHNF) for stream programs is computed recursively, and then the resulting stream is
computed corecursively. The WHNFs are defined in the following way:

data Streamw : Set Set; where
__: A Streamp A Streamw A

Note that the stream argument to __ is a (“suspended”) program, not a WHNF. The function
whnf which computes WHNFs can be defined by structural recursion:

whnf : Streamp A Streamw A

whnf (z xs) =2z s
whnf (zipWith f zs ys) = zipWithyw f (whnf xs) (whnf ys)

Here zipWith+y is defined by simple case analysis:

zipWithw : (A B C) Streamw A Streamw B Streamyw C
zipWithyw f (z xs) (y ys) = fxy zipWith f zs ys

WHNFs can then be turned into streams corecursively:

mutual
_w : Streamw A Stream A
T ISW = T ISP
_p : Streamp A Stream A
xsp = whnf zsw

Note that this definition is guarded. (Agda accepts definitions like this one even though it is split
up over two mutually defined functions; alternatively one could write z zsw = = whnf xs w
and define _p separately.)

Given the language above we can now define the stream of Fibonacci numbers using guarded
corecursion:

fibp : Streamp fib : Stream
fibp = 0 zipWith _+_ fibp (1 fibp) fib = fibpp

68et; is a type of large types; has type Set; Set; for any i.

38

Beating the Productivity Checker Using Embedded Languages Danielsson

One can prove that this definition satisfies the original equation for fib by first proving core-
cursively that _p is homomorphic with respect to zip With/zipWith:

zipWith-hom : (f : A B C) (xs : Stream A) (ys : Stream B)
zipWith f xzs ys p zipWith f zsp ysp
fib-correct : fib 0 zipWith _+_ fib (1 fib)

For the omitted proofs, see Danielsson| (2010a). One may also want to establish that the
original equation for fib defines the stream completely, i.e. that it has a unique solution. For
an explanation of how this can be done, see Section

It can be instructive to see what would happen if we tried to use the method above to
implement the ill-defined stream bad from the introduction. Defining the language and giving
a “definition” for bad is straightforward:

data Streamp (A : Set) : Set where
_ : A (Streamp A) Streamp A
tail : Streamp A Streamp A

bad : Streamp
bad = tail (zero bad)

However, turning stream programs into streams becomes tricky. How would tailw be defined?

data Streamw (A : Set) : Set where tailw : Streamw A Streamw A
__: A Streamp A Streamw A tailw (z xs) = 7

Note that, in the body of tailw, xs is a stream program, but we need to produce a WHNF.

4 Several Types at Once

The technique introduced in Section |3|is not limited to streams. In fact, it can be used with
several types at the same time. To illustrate how this can be done I will implement circular
breadth-first labelling of trees 4 la|Jones and Gibbons| (1993).

The following type of potentially infinite binary trees will be used:

data Tree (A : Set) : Set where
leaf : Tree A
node : (Tree A) A (Tree A) Tree A

Jones and Gibbons’ implementation can be described as follows. First a labelling function lab
is defined. This function takes a tree, along with a stream of streams of new labels. The labels
in a prefix of the n-th stream are used to label the n-th level of the tree, and the remaining
labels are returned from lab:”

lab : Tree A Stream (Stream B) Tree B Stream (Stream B)

lab leaf bss = (leaf, bss)
lab (node i _7) ((b bs) bss) = (node (1) b (r), bs bss)
where

(I,bss) = lab (1) (bss)
(r,bss) = lab (1) bss

7Agda does not support pattern matching in where clauses as used here, but this is easy to work around
using projection functions.

39

Beating the Productivity Checker Using Embedded Languages Danielsson

This code is not accepted by Agda, because the recursive calls are not guarded (their results are
destructed). The next step in Jones and Gibbons’ implementation is to construct the stream
of streams of labels which is used by lab, and use these streams to compute the relabelled tree.
This is done using a circular construction:

label : Tree A Stream B Tree B
label t bs = ¢
where (t,bss) = lab ¢ (bs bss)

This code is not accepted by Agda, because lab is not a constructor, and furthermore the result
of lab is destructed.

To implement breadth-first labelling in the style of Jones and Gibbons the following universe
of trees, streams, products and arbitrary (small) types will be used:

data U : Set; where El : U Set
tree U U El (tree a) = Tree (El a)
stream : U U El (stream a) = Stream (El a)
. U UU El(a b) — Ela Elb
_ : Set U El A = A

The type U defines codes for elements of the universe, and FEl interprets these codes.
By indexing the program and WHNF types by codes from the universe U we can work with
several types at once:

mutual
data Elp : U Set; where
: Elw a FElp a
fst : Elp (a b) Elpa
snd : Elp (a b) Elp b
lab : Tree AEIlp (stream Stream B)Elp (tree B stream Stream B)
data Elw : U Set; where
leaf : Elw (tree a)
node : (Elp (tree a)) Elw a (Elp (tree a)) Elw (tree a)
—— : Elwa (Elp (stream a)) Elw (stream a)
—— : Elwa Elwb Elw (a b)

Note that only those constructor arguments which are delayed are represented as programs in
the definition of Elw. Note also that the two types are defined mutually: the WHNF type
is included in the type of programs using the constructor . This makes the program type
less usable (the program (fst p xs) is not well-typed, for instance), but avoids some code
duplication.

The type of lab may seem a bit strange: the inner and outer streams are represented
differently. One reason for this design choice can be seen in the definition of labvy:

labw : Tree A Ely (stream Stream B) FEly (tree B stream Stream B)

laby leaf bss = (leaf, bss)
labw (node I _ 1) (b bs bss) = (node (fstz) b (fsty), bs sndy)
where

40

Beating the Productivity Checker Using Embedded Languages Danielsson

x = lab (1) (bss)
y lab () (snd)

Consider the second clause. If labw had the type
Tree A Ely (stream (stream b)) Elw (tree b stream (stream b)),

then the analogue of bs would be a program, but the head of the resulting stream of streams
(bs in the definition above) must be a WHNF. The use of “raw” inner streams also means
that the input to the label function does not need to be converted.

Note that labw is non-recursive. The remainder of whnf is straightforward to implement
using structural recursion:

fstw : Elw (a b) Ely a whnf : Elp a Elw a

oty (z,y) = z whnf ((w) = w

sndw : Flw (a b) Elw b whnf (fst p) = fstyw (whnf p)
dW C W w whnf (snd p) = sndw (whnf p)

sndw (2,y) =y whnf (lab t bss) = labw t (whnf bss)

It is also easy to define _w and _p. These definitions use a lexicographic combination of guarded
corecursion and structural recursion (see Section :

mutual
,W:Elwa Ela
leaf w = leaf
nodelzrw = node(lp) zw(7rp)
T IS W = TWw s p
(z,y) w = (zw, yw)
r W = T
_p : Flpa Ela

pp = whnfpw
Finally we can define label:

label : Tree A Stream B Elp (tree B stream Stream B)
label t bs = labt ((bs snd (label t bs)))

label : Tree A Stream B Tree B
label t bs = fst (label t bs) p

Note that the helper function label, which corresponds to the cyclic part of the original label,
is defined using guarded corecursion.

I have proved that the definition of label is correct: the resulting tree has the same shape as
the original one, and a breadth-first traversal of the resulting tree produces a potentially infinite
list of labels which is a prefix of the stream given to label. To state correctness I extended the
universe with support for potentially infinite lists, and added some programs to the Elp type.
For details of the statement and proof, see Danielsson (2010a).

5 Making Proofs Guarded

The language-based approach to guardedness introduced in Section 3| has some problems when
applied to programs:

41

Beating the Productivity Checker Using Embedded Languages Danielsson

e The interpretive overhead, compared to a direct implementation, can be substantial. For
instance, computing the n-th element of the stream fib defined in Section [3|requires a num-
ber of additions which is exponential in n, whereas if fib = 0 zipWith _+_ fib (1 fib)
is implemented directly in a language which uses call-by-need this computation only re-
quires O(n) additions. The reason for this discrepancy is that the interpreter _p does
not preserve sharing. One could perhaps work around this problem by writing a more
complicated interpreter, but this seems counterproductive: why spend effort writing a
new interpreter when one is already provided by the host programming language (or the
underlying hardware)?

e Proving properties about the interpreted definitions (for instance to establish that they
are correct) can be awkward, because this amounts to proving properties about the in-
terpreter.

However, these problems are usually irrelevant for proofs: the run-time complexity of proofs
is rarely important, and any proof of a property is usually as good as any other. Hence the
approach is likely to be more useful for making proofs guarded, than for making programs
guarded.

This section shows how the technique can be applied to proofs. Hinze| (2008) advocates
proving stream identities using a uniqueness property. One example in his paper is the iterate
fusion law:

fusion : (h : A B) (L : A A) (L : B B)

((z : A) h(hz) fo(ha))
(z : A) map h (iterate fy x) iterate fo (h)

Here map and iterate are defined as follows:

map : (A B) Stream A Stream B
map f (z zs) = fx map f (xs)
iterate : (A A) A Stream A
iterate f ¢ = x iterate f (f x)

Hinze proves the iterate fusion law by establishing that the left and right hand sides both satisfy
the same guarded equation, f = hz [(fi =) (where f is the “unknown variable”):

map h (iterate f; x) by definition
h x map h (iterate fi (fi z))

h z iterate fo (h (fi)) assumption
h x iterate fo (fo (h z)) by definition
iterate fo (h x)

The separately proved® fact that the equation has a unique solution then implies that
map h (iterate fi x) and iterate fo (h) are equal.

Note that the proof above is almost a proof by guarded coinduction: the two equational
reasoning blocks can be joined by an application of the coinductive hypothesis. However, the
second block uses transitivity, thus destroying guardedness. We can work around this problem

8Hinze proves this using a method described by Rutten| (2003), which in fact is closely related to the method
described here, see Section@

42

Beating the Productivity Checker Using Embedded Languages Danielsson

by following the approach introduced in Section 3| Let us define a language of equality proof
“programs” as follows:

data p_ : Stream A Stream A Set where
—— :(x:A) (zsp ys) z zspx ys
— : (ws : Stream A) zsp ys ysp 28 IS p 28
_0O: (ws : Stream A) zsp zs

The last two constructors represent transitivity and reflexivity, respectively. Note that the
transitivity constructor is inductive; a coinductive transitivity constructor would make the
relation trivial (see Danielsson and Altenkirch (2010)). The somewhat odd names were chosen to
make the proof of the iterate fusion law more readable, following Norell (2007). Just remember
that __ and _[J are both weakly binding, with __ right associative and binding weaker than

h:AB) (i : A A4 (fL: B B)
(

z: A) h(fiz) f2(hz))
(z : A) map h (iterate fi x) p iterate fo (h x)

fusion h fi fo hyp x =

map h (iterate fi x) by definition

h z map h (iterate fi (fi z)) hx fusion h fi fo hyp (fi T)
h x iterate fo (h (fi 7)) h x iterate-cong fo (hyp x)
h z iterate fo (fo (h z)) by definition

iterate fo (h) O

Note that the definition of fusion is guarded. The definition uses some simple lemmas (iterate-
cong, by and definition), which are omitted here.

In order to finish the proof of the iterate fusion law we have to show that _p_is sound with
respect to _. To do this one can first define a type of WHNF's:

data . : Stream A Stream A Set where
iz A) zsp ys T TSWIT YS

It is easy to establish, by simple case analysis, that this relation is a preorder:

reflyy ¢ (xs : Stream A) zs w s
transw : TS w YS YS w 28 IS w 28

It follows by structural recursion that programs can be turned into WHNF's:

whnf @ xsp ys s w ys

whnf (z xs) =z 1y

whnf (zs xys yss) transw (whnf xgs) (whnf yss)
whnf (zs 0O) = refly s

Finally soundness can be proved using guarded corecursion:

mutual
soundw : TS w Ys xS ys
soundw (x zgs) = z soundp xgs

43

Beating the Productivity Checker Using Embedded Languages Danielsson

soundp : TS p Ys IS Ys
soundp xgs = soundw (whnf zgs)

Note that there is no need to prove that the application soundp (fusion h fi fo hyp x) satisfies
its intended defining equation, whatever that would be, or that this equation has a unique
solution.

Using the language-based approach to guardedness I have formalised a number of examples
from Hinze’s paper, see Danielsson| (2010a). Rephrasing the proofs using guarded coinduction
turned out to be unproblematic.

As a further example, let us show that the defining equation for fib (see Section (3 has a
unique solution. We can state the problem as follows:

fib-rhs : Stream Stream
fib-rhsns = 0 zipWith _+_ ns (1 ns)

fib-unique : (ms ns : Stream) ms fib-rhs ms ns fib-rhs ns ms p ns

The type _p_ used here is different from the one used above: the proof will make use of the
congruence of zipWith, and the coinductive hypothesis will be an argument to this congruence,
so a constructor for the congruence is included among the equality proof programs:

data p_ : Stream A Stream A Set where

zipWith-cong : (f : A A A) xs1p ys; TS2 p YSs
zipWith f xs1 xso p zipWith f ys; ys,

It is easy to extend the definition of whnf to support zipWith-cong, using which we can define
fib-unique as follows:

fib-unique ms ns hyp, hypy, =
ms completep hyp,
fib-rhs ms 0 zipWith-cong _+_ (fib-unique ms ns hyp, hyps)
(1 fib-unique ms ns hyp, hyps)
fib-rhs ns completep (sym hyps)
ns O

Here sym is the proof of symmetry of _ from Section[2} and completep shows that p_is complete
with respect to _:

completep : xs ys xS p Ys
completep (x zys) = x completep (ags)

6 Destructors

The following, alternative definition of the Fibonacci sequence is not directly supported by the
framework outlined in previous sections:

fib : Stream
fib =0 (1 =zipWith _+_ fib (tadl fib))

44

Beating the Productivity Checker Using Embedded Languages Danielsson

The problem is the use of the destructor tail. Unrestricted use of destructors can lead to non-
productive “definitions”, as demonstrated by bad (see Section . However, destructors can be
incorporated by extending the program type with an index which indicates when they can be
used.

Consider the following type of stream programs:

data Streamp : Bool Set Set; where
[-] . (Streamp true A) Streamp false A
__ : A Streamp false A Streamp true A
tail : Streamp true A Streamp false A
forget : Streamp true A Streamp false A
zipWith : (A B C) Streamp b A Streamp b B Streamp b C

The type Streamp b A stands for streams generated in chunks of size (at least) one, where the
first chunk is guaranteed to be non-empty if the index b is true. The constructor [_] marks the
end of a chunk. Note how the indices ensure that a finished chunk is always non-empty, and
that tail may only be used to inspect the chunk currently being constructed. The constructor
forget is used to “forget” that a chunk is already finished; forget represents the identity function.
This constructor is used in the implementation of fibp (an alternative would be to give zipWith
a more general type):

fibp : Streamp true
fibp = 0 [(1 zipWith _4_ (forget fibp) (tail fibp))]

The implementation of _p for this language is very similar to that for the language in Section
so it is omitted here. For details of this implementation, the proof of correctness of fibp, and
the proof of uniqueness of solutions of the defining equation for fibp, see Danielsson (2010a).

7 Other Chunk Sizes

The language of the previous section can be generalised to support other chunk sizes (see
Danielsson| (2010a))), i.e. other moduli of production (Endrullis et al.2010). Larger chunk sizes
can provide interesting situations. Consider the following alternative definition of the function
map from Section

mapy : (A B) Stream A Stream B
map, [(x zs) with zs

mapy f (z xs) |y ys = fz (fy mapy f(ys))
One can show that map and map, are extensionally equal:
mamap, : (f + A B) (xs : Stream A) map f s map, f xs

However, assuming that pattern matching is “strict”, they are not interchangeable. The fol-
lowing definition of the stream of natural numbers is productive, albeit not guarded:

nats : Stream
nats = 0 map suc nats

The definition that we get by replacing map by map,, on the other hand, is not productive:

45

Beating the Productivity Checker Using Embedded Languages Danielsson

natso : Stream
natsy = 0 map, suc natsy

The first element of natss is 0, but map, needs to access the first two elements of its argument
stream in order to output anything.
We can perhaps get a better picture of the situation above using the following language:

data Streamp (m :) : Set Set; where
[=] : (Streamp m m A) Streamp m 0 A
_ : A Streamp mn A Streamp m (sucn) A
map : (A B) Streamp m n A Streamp m n B

Streamp m n A is a language of programs which generate streams of As in chunks of size m,
where the first chunk has size n. We can define WHNFs and the whnf function as follows:

data Streamw (m :) : Set Set; where
[-] : Streamp m m A Streamw m 0 A
__ A Streamw m n A Streamw m (suc n) A

mapyw : (A B) Streamw m n A Streamw m n B
mapw f [zs] = [map f xs]

mapyw [(z xs) = fx mapyw [s

whnf : Streamp (suc m) n A Streamy (suc m) n A
whnf [zs] = [zs]

whnf (z zs) = z whnf xs

whnf (map f zs) = mapy f (whnf s)

Stream programs where all chunks are non-empty can then be turned into streams using guarded
corecursion:

mutual
_w @ Streamwy (suc m) (suc n) A Stream A
z [zslw =z asp
z(yzs)w =2 y xsw
_p : Streamp (suc m) (suc n) A Stream A
zsp = whnf zsw

Using the language above we cannot define natss. The following code is ill-typed:

natsy : Streamp 2 1
natss = 0 [map suc natsq]

On the other hand, the following definitions are accepted:

nats : Streamp 11 natsy : Streamp 2 2
nats = 0 [map suc nats] natss = 0 1 [map suc natss|

Definitions which require the use of non-uniform chunk sizes cannot be handled using the
language above. As an example of such a definition, consider the following presentation of the
Thue-Morse sequence, due to Endrullis et al. (2010):

46

Beating the Productivity Checker Using Embedded Languages Danielsson

thue-morse : Stream Bool
thue-morse = false (map not (evens thue-morse) tail thue-morse)

Here evens xs consists of every other element of zs, starting with the first, and _ interleaves
two streams: (z 2s) ys = = (ys wxs).”

8 Nested Applications

Before wrapping up, let us briefly consider nested applications of the function being defined,
asin (z zs) = z (xs). Definitions with nested applications are common when programs
are written using continuation-passing style. To handle such applications one can include a
constructor for the function in the type of programs:

data Streamp (A : Set) : Set where w @ Streamw A Streamw A
A (Streamp A) Streamp A w(z zs) = z p (pxs)
p : Streamp A Streamp A whnf : Streamp A Streamwy A
data Streamw (A : Set) : Set where whnf (z xs) = z s
__: A Streamp A Streamw A whnf (p zs) = w (whnf zs)

(The definition of _p is omitted above.) By turning streams into programs one can then define

_ : Stream A Streamp A . Stream A Stream A
T TS = T X8 S = p IS p

In order to prove that satisfies its intended defining equation it can be helpful to use an equality
proof language, as in Section |5, and to include a constructor for the congruence of p in this
language:

data p_ : Stream A Stream A Set where
p-cong : (zs ys : Streamp A) zspp YSp PIZSPP PUYSP

For further details, see Danielsson (2010al), who also establishes that ’s defining equation has a
unique solution.

9 Related Work

This section is mainly concerned with discussing methods for establishing productivity in sys-
tems based on guarded corecursion. Other related work is discussed towards the end.

Rutten| (2003) proves that certain operations on streams are well-defined by using a technique
which is very similar to the one described in this paper. He defines a language E of real number
stream expressions inductively (this language is similar to Streamp), and defines a stream
coalgebra ¢ : E F by recursion over the structure of E (this corresponds to whnf). The type of
streams is a final coalgebra, so from ¢ one obtains a function of type E Stream (corresponding
to _p), which can be used to turn stream expressions into actual streams. Rutten then uses

9A reviewer pointed me to Endrullis et al.| (2010). After the paper was accepted I came up with a language
which can be used to define thue-morse, see Danielsson (2010a).

47

Beating the Productivity Checker Using Embedded Languages Danielsson

coinduction (expressed using bisimulations) to prove that the defined operations satisfy their
intended defining equations, and that these equations have unique solutions.

There are some differences between Rutten’s proof and the technique described here, other
than the different settings (finality vs. guarded corecursion, bisimulations vs. guarded coinduc-
tion). One is that Rutten defines the variant of fib from Section @ via two mutually recursive
streams (fib = 0 fib’ and fit' = 1 zipWith _+_ fib fib’); he does not discuss anything
resembling the counting approaches of Sections [6] and Another difference is that Rutten’s
language F is inductive, whereas Streamp uses mixed induction and coinduction. A simple
consequence of this difference is that when Rutten defines fib he includes it as a term in E;
with the method described here one can get much further using a fixed language. Danielsson
and Altenkirch (2010) also take advantage of this difference when proving that one subtyping
relation is sound with respect to another. In this proof the program and WHNF types are
defined mutually, using mixed induction and coinduction, and the whnf function constructs its
result using a combination of structural recursion and guarded corecursion. For completeness
a short variant of this development is included in Appendix

Rutten’s proof is closely related to a technique due to Bartels (2003). Bartels formulates
the technique in a general categorical setting, and restricts the form of whnf, and in return
proofs showing that the definitions uniquely satisfy certain defining equations come for free.
Furthermore Bartels manages to define fib without including it as a term in the language.

Niqui| (2009, 2010) implements one of Bartels’ corecursion schemes, -coiteration, in Coq.
He states that this scheme cannot handle van de Snepscheut’s corecursive definition of the
Hamming numbers (Dijkstra,1981]), which can easily be handled using the method described in
this paper.

Matthews| (1999) and Di Gianantonio and Miculan| (2003) describe general frameworks for
defining values using a mixture of recursion and corecursion, based on functions which satisfy
notions of contractivity. The methods seem to be quite general, and have been implemented
(in Isabelle and Coq, respectively; note that guarded corecursion is not a primitive feature of
Isabelle).

The implementations mentioned above (Matthews|1999; Di Gianantonio and Miculan |2003;
Niqui| 2009, 2010) provide you with unique solutions to equations, whereas when using the
method described in this paper you need to prove correctness and uniqueness manually if you
are interested in these properties. On the other hand, as pointed out in Section [5| there is
rarely any need to pay this price when defining a proof. I suspect that circumstances determine
which method is cheapest to use.

Bertot (2005)) implements a filter function for streams in Coq. An unrestricted filter function
is not productive, so Bertot restricts the function’s inputs using predicates of the form “always
(eventually P)”. The always part is defined coinductively, and the eventually part inductively.
As mentioned in the introduction this work is orthogonal to the work presented here.

Conor McBride (personal communication) has developed a technique for establishing pro-
ductivity, based on the work of Hancock and Setzer| (2000). The idea is to represent the
right-hand sides of function definitions using a type RHS ¢, where g indicates whether the
context is guarding or not, and to only allow corecursive calls in a guarding context.

Caprettal (2005) defines the partiality monad, which can be used to represent partial (po-
tentially non-terminating) computations, roughly as follows:

data ¥ (A : Set) : Set where
return : A AvY
step : (AY) AY

48

Beating the Productivity Checker Using Embedded Languages Danielsson

The constructor return returns a result, and step postpones a computation. It is easy to define
bind for this monad: _>=_: AY (A4 B ") B Y. Unfortunately it can be inconvenient to
use this definition of bind in systems based on guarded corecursion, because _>=_ is not a
constructor. Megacz| (2007) suggests (more or less) the following alternative definition:

data _” (A : Set) : Set; where
return : A AV
>=_: (B") (B (A")) A"

One can note that this is very close to the first step of the technique presented in this paper.
Megacz does not translate from the second to the first type, though.

Bertot and Komendantskaya (2009) describe a method for replacing corecursion with recur-
sion. They map values of type Stream A to and from the isomorphic type A, and values of
this type can be defined recursively. The authors state that the method is still very limited and
that, as presented, it cannot handle van de Snepscheut’s definition of the Hamming numbers.

McBride| (2009) defines an applicative functor which captures the notion of “beling] ready
a wee bit later”. Using this structure he defines various corecursive programs, including the
circular breadth-first labelling function which is defined in Section[4] The technique is presented
using the partial language Haskell, but Robert Atkey (personal communication) has later im-
plemented it in Agda. The technique has not been developed very far yet: as far as [am aware
no one has tried to prove any properties about functions defined using it.

Instead of working around the limitations of guarded corecursion one can include language
features which make it easier to explain why programs are productive. One such feature is sized
types (Hughes et al.|[1996; Barthe et al.2004; Abel |2009), and the -calculi of |Buchholz| (2005)
provide other examples. Another approach is to use cleverer algorithms for establishing pro-
ductivity. [Endrullis et al. (2010} 2008) present algorithms based on eventually periodic moduli
of production, which handle the definition of thue-morse from Section |7| automatically (except
that, as presented, they only support first-order term-rewriting systems). The algorithms are
tailored for streams; it seems to be hard to adapt them to, say, coinductive trees. Another al-
gorithm is presented by Telford and Turner| (1997). This algorithm does not handle thue-morse
(Endrullis et al.|2010), but has the advantage of working for a large class of coinductive data
types.

Morris et al.| (2006) use the technique of replacing functions with constructors to show ter-
mination rather than productivity (see Morris et al. (2007) for an explanation of the technique).
They replace a partially applied recursive call (which is not necessarily structural, because it
could later be applied to anything), nested inside another recursive call, with a constructor
application. If this constructor application is later encountered it is handled using structural
recursion.

The technique presented here also shares some traits with |[Reynolds/ defunctionalisation
(1972). Defunctionalisation is used to translate programs written in higher-order languages to
first-order languages, and it basically amounts to representing function spaces using application-
specific data types, and implementing interpreters for these data types.

10 Conclusions

I hope to have shown, through a number of examples, that the language-based approach to
establishing productivity is useful. I am currently turning to it whenever I have a problem with
guardedness; see [Danielsson and Altenkirch| (2010) and Danielsson (2010b) for some examples
not included in this paper.

49

Beating the Productivity Checker Using Embedded Languages Danielsson

However, there are some problems with the method. As discussed in Section [5] it is not
very useful if efficiency is a concern. Furthermore it can be disruptive: if one decides to use
the method after already having developed a large number of functions in some project, and
many of these functions have to be reified as constructors in a program data type, then a lot
of work may be necessary. In fact, this problem—in one shape or another—is likely to apply
to all approaches to making definitions guarded. In the long term I believe that it would be
useful to adopt a more modular approach to productivity than guardedness.

Acknowledgements. I would like to thank Andreas Abel, Thorsten Altenkirch, Conor Mc-
Bride, Nicolas Oury and Anton Setzer for many discussions about coinduction, and Graham
Hutton as well as several anonymous reviewers for useful feedback. I would also like to thank
EPSRC for financial support (grant code: EP/E04350X/1).

A An Inductive Approximation of Stream Equality

Danielsson and Altenkirch| (2010) prove that one subtyping relation is sound with respect to
another using the technique described in this paper. This appendix outlines the proof, but in
a simplified (and slightly different) setting: equality between streams.

Recall the definitions of Stream and stream equality, _, from Section One can define a
sound approximation of stream equality inductively as follows (using an idea due to Brandt
and Henglein| (1998)):

data __ (H : List (Stream A Stream A)) : Stream A Stream A Set where
iz A — (v azs,z ys) H xs ys — H =z x8 1 ys
hyp : (zs,ys) H — H s ys

trans : H s ys — H ys zs — H s zs

The intention is that, if one can prove H s ys, and all the assumptions in the list H are
valid, then zs and ys should be equal. The first constructor of __ states that, in order to prove
that xs and = ys are equal, it suffices to show that xs and ys are equal, given the extra
assumption that z xs and x ys are equal. The second constructor makes it possible to use
the hypotheses in the list H (__ encodes list membership), and the third constructor encodes
transitivity. As an example, we can prove that the list repeat * = repeat x is equal to itself as
follows:

repeat-refl : (x : A) — [] repeat x repeat
repeat-reflz = x hyp here

(The constructor here proves that the head of a list is a member of the list. In this case it is
used at the type (repeat z, repeat x) (repeat z, repeat x) [].)
Soundness of __ will now be established. The goal is to prove

All (Valid) H — H xs ys — s ys,

where All P zs means that P holds for all elements in the list xs, and Valid is uncurry for
stream predicates:

data All (P : A Set) : List A Set where
[] : Al P[]

50

Beating the Productivity Checker Using Embedded Languages Danielsson

__:Px AllPas Al P (z wxs)

Valid : (Stream A Stream A Set) — Stream A Stream A Set
Valid _R_ (zs,ys) = xs R ys

We begin by defining the program and WHNF types mutually as follows:

mutual
data p_ : Stream A Stream A Set where
sound : All (Valid sw.) H — H xs ys — z8p ys
trans : zSpys — YSp 28 —> ISp 28
data . : Stream A Stream A Set where
——:(xz:A) = (zsp ys) = x zSWT YS

Note that the first argument to the program sound refers to WHNFs. The function transw :
TS W YS YsS w 28 xS w 28 can be defined using simple case analysis. The function soundw is
defined as follows, using structural recursion:

soundw : All (Valid sw) H — H x5 ys — ISw ys

soundy valid (hyp h) = lookup valid h
soundw valid (trans zgs yss) = transw(soundw valid xgs)(soundvy valid yss)
soundw valid (x wgs) = proof

where proof = x sound (proof wvalid) wgs

In the first clause lookup : All P xs x s P z is used to fetch a proof from the “list” of valid

ol

Beating the Productivity Checker Using Embedded Languages Danielsson

assumptions. In the third clause a circular proof is constructed using guarded corecursion; note
that the list of valid assumptions is extended with the proof currently being defined. Given
transw and soundwy it is easy to define whnf using structural recursion:

whnf @ xsp ys s w ys
whnf (sound valid zgs) = soundw valid zgs
whnf (trans zgs yss) = transw (whnf zgs) (whnf yss)

The remaining pieces of the soundness proof are omitted (see Danielsson| (2010a)).

References

Andreas Abel. Mixed inductive/coinductive types and strong normalization. In Programming
Languages and Systems, 5th Asian Symposium, APLAS 2007, volume 4807 of LNCS, pages
286-301, 2009.

The Agda Team. The Agda Wiki. Available at http://wiki.portal.chalmers.se/agda/,
2010.

Thorsten Altenkirch and Nils Anders Danielsson. Termination checking in the presence of
nested inductive and coinductive types. Extended abstract for talk given at the Workshop
on Partiality and Recursion in Interactive Theorem Provers, 2010.

Falk Bartels. Generalised coinduction. Mathematical Structures in Computer Science, 13(2):
321-348, 2003.

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based termination of
recursive definitions. Mathematical Structures in Computer Science, 14(1):97-141, 2004.

Yves Bertot. Filters on coinductive streams, an application to Eratosthenes’ sieve. In Typed
Lambda Calculi and Applications, 7th International Conference, TLCA 2005, volume 3461
of LNCS, pages 102-115, 2005.

Yves Bertot and Ekaterina Komendantskaya. Using structural recursion for corecursion. In
Types for Proofs and Programs, International Conference, TYPES 2008, volume 5497 of
LNCS, pages 220236, 2009.

Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive type equality and
subtyping. Fundamenta Informaticae, 33(4):309-338, 1998.

Wilfried Buchholz. A term calculus for (co-)recursive definitions on streamlike data structures.
Annals of Pure and Applied Logic, 136(1-2):75-90, 2005.

Venanzio Capretta. General recursion via coinductive types. Logical Methods in Computer
Science, 1(2):1-28, 2005.

Thierry Coquand. Infinite objects in type theory. In Types for Proofs and Programs, Interna-
tional Workshop TYPES’93, volume 806 of LNCS, pages 62—78, 1994.

Nils Anders Danielsson. Code accompanying the paper. Available from http://www.cs.nott.
ac.uk/~nad/, 2010a.

Nils Anders Danielsson. Total parser combinators. Submitted, 2010b.

92

http://wiki.portal.chalmers.se/agda/
http://www.cs.nott.ac.uk/~nad/
http://www.cs.nott.ac.uk/~nad/

Beating the Productivity Checker Using Embedded Languages Danielsson

Nils Anders Danielsson and Thorsten Altenkirch. Subtyping, declaratively; an exercise in mixed
induction and coinduction. To appear in the proceedings of the Tenth International Confer-
ence on Mathematics of Program Construction (MPC’10), 2010.

Pietro Di Gianantonio and Marino Miculan. A unifying approach to recursive and co-recursive
definitions. In Types for Proofs and Programs, International Workshop, TYPES 2002, volume
2646 of LNCS, pages 148-161, 2003.

Edsger W. Dijkstra. Hamming’s exercise in SASL. EWD792 (privately circulated note), 1981.

Jorg Endrullis, Clemens Grabmayer, and Dimitri Hendriks. Data-oblivious stream produc-
tivity. In Logic for Programming, Artificial Intelligence, and Reasoning, 15th International
Conference, LPAR 2008, volume 5330 of LNCS, pages 79-96, 2008.

Jorg Endrullis, Clemens Grabmayer, Dimitri Hendriks, Ariya Isihara, and Jan Willem Klop.
Productivity of stream definitions. Theoretical Computer Science, 411(4-5):765-782, 2010.

Peter Hancock and Anton Setzer. Interactive programs in dependent type theory. In Computer
Science Logic, 14th International Workshop, CSL 2000, volume 1862 of LNCS, pages 317—
331, 2000.

Peter Hancock, Dirk Pattinson, and Neil Ghani. Representations of stream processors using
nested fixed points. Logical Methods in Computer Science, 5(3:9), 2009.

Ralf Hinze. Functional pearl: Streams and unique fixed points. In ICFP’08, Proceedings of the
2008 SIGPLAN International Conference on Functional Programming, pages 189-200, 2008.

John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive systems using
sized types. In POPL 96, Proceedings of the 28rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 410-423, 1996.

Geraint Jones and Jeremy Gibbons. Linear-time breadth-first tree algorithms: An exercise in
the arithmetic of folds and zips. Technical Report 071, Department of Computer Science,
The University of Auckland, 1993.

John Matthews. Recursive function definition over coinductive types. In Theorem Proving in
Higher Order Logics, 12th International Conference, TPHOLs’ 99, volume 1690 of LNCS,
pages 73-90, 1999.

Conor McBride. Time flies like an applicative functor. Available at http://wuw.e-pig.org/
epilogue/7p=186, 2009.

Adam Megacz. A coinductive monad for Prop-bounded recursion. In PLPV’07, Proceedings of
the 2007 workshop on Programming languages meets program verification, pages 11-20, 2007.

Peter Morris, Thorsten Altenkirch, and Conor McBride. Exploring the regular tree types.
In Types for Proofs and Programs, International Workshop, TYPES 2004, volume 3839 of
LNCS, pages 252-267, 2006.

Peter Morris, Thorsten Altenkirch, and Neil Ghani. Constructing strictly positive families.
In Theory of Computing 2007, Proceedings of the Thirteenth Computing: The Australasian
Theory Symposium (CATS2007), pages 111-121, 2007.

93

http://www.e-pig.org/epilogue/?p=186
http://www.e-pig.org/epilogue/?p=186

Beating the Productivity Checker Using Embedded Languages Danielsson

Milad Niqui. Coalgebraic reasoning in Coq: Bisimulation and the A-coiteration scheme. In
Types for Proofs and Programs, International Conference, TYPES 2008, volume 5497 of
LNCS, pages 272-288, 2009.

Milad Niqui. Coiterative morphisms: Interactive equational reasoning for bisimulation, using
coalgebras. Technical Report SEN-1003, Centrum Wiskunde & Informatica, 2010.

Ulf Norell. Towards a practical programming language based on dependent type theory. PhD
thesis, Chalmers University of Technology and Géteborg University, 2007.

John C. Reynolds. Definitional interpreters for higher-order programming languages. In
ACM 72, Proceedings of the ACM annual conference, volume 2, pages 717-740, 1972.

J.J.M.M. Rutten. Behavioural differential equations: a coinductive calculus of streams, au-
tomata, and power series. Theoretical Computer Science, 308(1-3):1-53, 2003.

Ben A. Sijtsma. On the productivity of recursive list definitions. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 11(4):633-649, 1989.

Alastair Telford and David Turner. Ensuring streams flow. In Algebraic Methodology and
Software Technology, 6th International Conference, AMAST 97, volume 1349 of LNCS, pages
509-523, 1997.

Philip Wadler, Walid Taha, and David MacQueen. How to add laziness to a strict language,
without even being odd. In Proceedings of the 1998 ACM SIGPLAN Workshop on ML, 1998.

o4

	Introduction
	Mixed Induction and Coinduction
	Making Programs Guarded
	Several Types at Once
	Making Proofs Guarded
	Destructors
	Other Chunk Sizes
	Nested Applications
	Related Work
	Conclusions
	An Inductive Approximation of Stream Equality

