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Abstract

We propose multiple factors of authentication, more specifically a two factor. We have
developed an algorithm ESC which utilizes a combination of public key and symmetric key
encryption that provides a solid secured communication framework. As a proof of concept,
we report here Java based implementation of the approach.
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1 Introduction

Computer and Network security was not at all well known, even about 15 years ago. Today,
it is something everyone is aware of the need. Cybersecurity is one of the fastest growing
fields, U.S. has an urgent need to fill 2.5 million Cybersecurity jobs Test Out. Security includes
topic of threats, countermeasures, risks, stories, events and paranoia. With some mathematics,
algorithms, designs and software issues mixed in yet, not enough people understand the issues
and implications.

1.1 Goals of Security

These are the few goals of security:

• Integrity: Guarantee that the data is what we expect

• Authentication: Guarantee that only authorized persons can access to the resources

• Confidentiality: The information must just be accessible to the authorized people

• Reliability: Computers should work without having unexpected problems
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Table 1: Four Layered Model of Security
Types of attacks Layer attack prevention methods

Logic bugs, design flaws, code injection Application Sandboxing, software restrictions

Insecure defaults, platform vulnerabilities Operating System Patches, reconfiguration, hardening
Sniffing, spoofing, masquerading Network Encryption, authentication, filtering

Console access, hardware-based attacks Physical Guards, vaults, device data encryption

1.2 Types of Security

Due to its importance security is highly diversified:

• Computer security: Deals with programs and users on a computer. Viruses, worms etc.
are part of computer security

• Network security: Deals with various OSI/ISO 7 layers (now-a-days TCP/IP 5 layers) in
a network including protocols

• Cryptography: A common theme involved in security. Deals with encrypting/decrypting
information to avoid malicious users from accessing the data. Cryptography is very im-
portant in networking which is the main focus of this paper. Note that cryptography can
be inserted at almost any layer in the OSI model.

• Physical security: Securing data centers and physical facilities

1.3 Vulnerabilities

Common attacks include:

• Software/OS exploits: Buffer overflows, Viruses, Worms, Trojans, Rootkits

• Network Attacks: Packet sniffing, spoofing, man-in-the-middle attack, DNS hacking

• Email and HTTP/web attacks: Phishing, SQL Injection and Cross Site Scripting (XSS).
Cognitive Cyber weapons and Social Engineering. Not all hackers are evil wrongdoers
trying to steal your info, Ethical Hackers, Consultants, Penetration testers, Researchers.

The above discussions can be summarized in the following table 1 which shows that security
is implemented in many layers. At least scientifically, we know how to do cryptography. Un-
secured message travels the network as plaintext P . To be secured, the message need to be
encrypted as ciphertext C. A cipher is a character-by-character or bit-for-bit transformation.
The whole essence of cryptography is that of mapping from plaintext to ciphertext and vice
versa utilizing some underlying algorithms that use some key K. Mathematically, we define
encryption function ψ : P 7→ C and decryption function µ : C 7→ P . Note that encryp-
tion followed by decryption will give the same result as decryption followed by encryption, i.e.
C = EK(P ), similarly, P = DK(C). Then it follows that: DK(EK(P )) = P . All of the above

suggest that security is inversely proportional to convenience i.e., Security ∝
1

Convenience
.

The more secure a system is, the more constraint the users will be.

2 Data Encryption and Decryption

Historically, four groups of people have used and contributed to the art of cryptography: the
military, the diplomatic corps, diarists, and lovers (the famous Alice-Bob ..). Cryptography
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has a long history dating back at least as far as Julius Caesar. Symmetric key cryptography
algorithms attributed to Julius Caesar, known as Caesar cipher. Monoalphabetic cipher

substitute one plaintext character with another letter of the alphabet. Later, to improve the
scheme, polyalphabetic encryption was invented that uses multiple Monoalphabetic ciphers.

The idea that the cryptanalyst knows the algorithms and that the secrecy lies exclusively
in the keys is called Kerckhoff’s principle, stated as follows: All algorithms must be public;

only the keys are secret.

The seminal RSA work (although too slow for actually encrypting large volumes of data but

is widely used for key distribution) has lead us to a trapdoor mechanism based on composite
residuosity classes, i.e., factoring a hard-to-factor num n = pq where p and q are two large prime
numbers. In fact RSA typically uses 256 bit, 512 bit key, but those have recently been cracked.
The new standard AES uses 1024 bit key. Below we discuss two such trials: Homomorphic
encryption and order preserving encryption.

2.1 Homomorphic Encryption

The homomorphic encryption, a long time dream of security experts, reflects the concept of
homomorphism, a structure-preserving map f(.) between two algebraic structures of the same
type. When f(.) is a one-to-one mapping, call f−1 : A

′

7→ A the inverse of f(.). Then
a = f−1(a′), b = f−1(b′), c = f−1(c′). In this case we can carry out the composition operation
⋄ in the target domain and apply the inverse mapping to get the same result produced by the
� composition operation in the original domain, f−1(a′) ⋄ f−1(b′) = f(a�b) Unfortunately,
the homomorphic encryption is not a practical solution at this time. Existing algorithms for
homomorphic encryption increase the processing time with encrypted data by many orders of
magnitude compared with processing of plaintext data. In this line, this is our humble tries to
go above and beyond with traditional encryption paradigm.

2.2 Order Preserving Encryption

Let a order-preserving function f : {1 . . .M} 7→ {1 . . .N} with N ≫M be uniquely represented
by a combination of M out of N ordered items. One can show that a order preserving f(x)
for a given point x ∈ {1 . . .M} has a Negative Hypergeometric Distribution (NHG) over a
random choice of f . To encrypt plaintext x the OPE encryption algorithm performs a binary
search down to x. Given the search key K the algorithm first assigns Encrypt(K,M/2), then
Encrypt(K,M/4) if the index m < M/2 and Encrypt(K, 3M/4) otherwise, and so on, until
Encrypt(K,x) is assigned. Searchable Symmetric Encryption (SSE) is used when an encrypted
database Ξ is outsourced to a cloud or to a different organization. Again, this is in line with
our approach to combine public key and symmetric key encryption.

3 Related Work

In [12], we reviewed the existing security mechanism that are in place in the virtual cloud
platform. Any Cloud Service platform [8] requires some sort of security mechanism for login,
for example Duo security where a valid user has to go through two factors authentication.
Typically the one time security code is sent to any smart phone [14].

Traditional SMTP (FROM address is not required, only TO is mandatory, that is a major
source of email phishing) based system employ Base64 encoding which increases the required
bandwidth by 33%. We envision that our work will fit well at least for person-to-person secured
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email communication (example application using Pretty Good Privacy (PGP) for encrypting
email.

There are many financial institutions and secured sites require that user must be authen-
ticated using multiple factors. Our proposed work is in line with those kind of applications
requirement. Our work in systems programming and systems administration leads fairly nat-
urally to security. UNIX operating system provides crypt command to encode data, the same
command can be used to decode as well. However, user may NOT like to use it and even this
command is not available on all systems. In particular, for reasons of national security, this
command is not supposed to be available on systems that are shipped outside of the United
States. Due to the ease of breaking it, it is considered to be obsolete.

We can think of ontology [1, 3, 4, 2] when pair of communicating parties use public and
private key. More relevant recent works reported in: [11], [5], [6], [15]. Lee et al [10] pro-
posed a holistic approach to security mechanism. [18] reports implementation of a secured IoT
communication, whereas our approach encompasses broader audience.

4 Materials and Method

We implemented the Rivest, Shamir and Adleman (RSA) algorithm utilizing extended Euclid’s
algorithm [7]. A running example of RSA can be found in [13] as well as in [17]. For readers’
conveniences we mention here one such example as well: p = 3 and q = 11, giving n = 33 and
z = 20, a suitable value for d is d = 7 since 7 and 20 have no common factors, e can be found
by solving the equation 7e = 1(mod20) which yields e = 3.

The basis of our approach is the scientific method : we develop hypothesis about perfor-
mance, create mathematical models, and run experiments to test them, repeating the process
as necessary. [16]. There are infinitely many primes number, example: first few primes to be
2, 3, 5, then multiplying all together and just add 1, we will get 31 which is another prime (aka
Euclid Prime), we just need to pick some of them suitably as the public and private key. When
two parties communicate securely, they need to exchange keys (example Diffee-Hellman key
exchange). There are certification authority (CA) like Kerberos and Key Distribution Center
(KDC). There are company which can certify digitally signed Web sites (example verisign).

We employ public key as well as symmetric key encryption. First, one party will send a
short message to the other party to be the encrypted key. The other party will decrpyt to know
the actual key value. As for symmetric encryption, one party can use Ceasar cipher simply
shifting (i.e., adding) the key value to the data. The other party, upon receiving the message,
simply can decrypt by subtracting the key. For symmetric key encryption, it is important that
inverse function do exist (for our case add and sub is the example of inverse function). This is
the high level understanding of the whole scenario.

As a running example, lets consider a plaintext message simply to be abc and suppose the
Ceasar cipher key to be 7.Then sender will send hij as ciphertext (shifting and adding each
character by 7) whereas the receiver will use the same key value 7 and this time she will subtract
the key value from the ciphertext to get back the plaintext. Here is our contribution: in our
approach, even before sending and receiving ciphertext, both the communicating parties need
to handshake and agree on public and private key, again utilizing the famous RSA algorithm.
Suppose the value 3 to be public key and 7 be the corresponding private key. So the decision
to encrypt and decrypt will depend on public key and private key. We also note that we have
to use modulus operation as the character set wraps around. For the above example, both the
party will know that public key is 3 and the private key is 7.

Sender will encode its message so that only a receiver with the key computation capability
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will be able to decode the message. Note that cryptography is a field of study unto itself, with
large and small complexities and subtleties as discussed forward in run time analysis subsection.

The details of the Java code is appended at the end of this paper. Due to space brevity,
we attach the client side code. Actually this type of application is NOT client-server model,
rather it is P2P where no one is client and server, every one may be deemed client and server.
We assume that the two parties already have some informal prior knowledge how they should
proceed.

5 Results and Discussions

We utilized the modular arithmetic, specifically modular multiplicative inverse. Inverse do
exist, sometimes we observed that decryption key turned out to be negative, then we simply
added the φ value to it. We also used MODULAR EXPONENTIATION taking advantage
of ”repeated squaring” and shifting, of course using the loop invariants by properly ”initializ-
ing, maintenance and termination”. RSA enables ”digital signature” to the end of an electronic
message. It is the perfect tool for electronically signed business contracts, electronic check, elec-
tronic purchase orders, and other electronic communications that parties wish to authenticate.

For our case, we use RSA during the first phase handshake of the communicating parties.
We use the key as ”nonce”, i.e., once in a life time for the entire duration of the subsequent
communication session. RSA relies on two factors: (a) Ease of finding large prime, and (b)
Difficulty of factoring the product of two large primes.

5.1 Run Time Analysis

Let β be the number of bits required to represent the keys. We know lg e = O(1) and lg d ≤ β,
and lgn ≤ β. Then public key requires O(1) modular multiplication and O(β2) bit operation,
secret keys require O(β) modular multiplication using O(β3) bit operations.

Again, we note here is passing that we are using RSA in ”hybrid” or ”key-management”
mode. In this mode, after successfully hand shaking mechanism, we employ symmetric key
encryption, i.e., encryption and decryption use the same key, we can just simply +(add) during
encryption and −(sub) during decryption

5.2 Overall Algorithm

Now that we have discussed in details how our personalized secure communication will take
place, we present below the overall algorithm ESC. By Sender we abstract everything related
to the sender side of the communication, i.e., IP address, port, domain name, user name etc.
Similarly, by Receiver we abstract everything related to the receiver side of the communication,
i.e., IP address, port, domain name, user name etc. Also we use two sub-algorithm A1 to be
public key algorithm and A2 to be any symmetric key algorithm. Then Personalized Secure
Communication ESC. is a 6-tuple(S, R, A1, A2, Key, M).

1. Sender sends the key using A1

2. Receiver computes the secret key using A1

3. Sender sends the encrypted message using A2
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4. Receiver decrypts the ciphertext using secret key of A2

6 Conclusion and Future Works

In this paper, we have proposed a personalized secure communication system that combines
RSA and symmetric encryption into an unified view and a simple prototype Java implemented
system that uses users chosen public key, private key and symmetric encryption key. We hope
to expand our system in the future to include more factors into considerations and a more
secured communication mechanism. More research should be done to discover optimal key size
by their own individual preference. Further work can be done such as cross validating our
recommendations with a system like DES, AES etc. From our research, it is expected that
our system will be highly scalable allowing for a vast selection of domains and datasets to be
applied in the future. As for the client server simulating, we used TCP. Future works might
use UDP to see how much performance improvement in terms of response time gain, of course
at the cost of probability of dropping call.

We have been able to discover a multitude of new research directions as a result of our
current work. We have shown a prototype implementation using Java.net framework, whereas
C++ is believed to be twice as faster than Java when employing Boost C++ socket library.
We wish to run more tests using both Java and C++ [9].
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/*

* Author Dr. Emdad Ahmed, Craig Matherly and Scott Payne

*/

public class encryptRSA

{

int e= 13, M, n = 437;

String line = "";

public encryptRSA()

{

// int M is the message char integer

this.M = 0;

} // end constructor

int Modular_Exponentiation(int message)

{

// compute M^e mod n using repeated squaring and shifting

int i, k, c = 0, d = 1;

int[] bb = new int[32];

for (i = 0; i < 32; i++)

bb[i] = 0; // initialize binary representation

bb = decimal_to_binary(e); // convert the decimal exponent into binary

k = bb.length; // assuming 32 bit integer, length is 32
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for (i = k - 1; i >= 0; i--)

{

c = c * 2; // actually c is not required, just for book keeping

d = (d * d) % this.n; // squaring

if (bb[i] == 1)

{

c++;

d = (d * message) % this.n; // shifting if bit value is 1

}

}

return d;

} // method Modular_Exponentiation

int[] decimal_to_binary(int num)

{

int[] local_array = new int[32]; // convert a decimal number to binary

int i;

for (i = 0; i < 32; i++)

local_array[i] = 0; // initialize binary array

i = 0;

while (num >= 1)

{

local_array[i] = num % 2; // store the mod value

num = num / 2; // divide the number by 2

i++; // next upper significant bit position

}

return local_array;

} // method decimal_to_binary

} // class crypt

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

public class decryptRSA

{

static int[] array = new int[3]; // represent d,x,y for Extended_Euclid

static int[] temparray = new int[3];

int n, phi, p = 23, q = 19, e = 13;

public decryptRSA()

{

this.n = this.p * this.q; // modulus

this.phi = (this.p - 1) * (this.q - 1); // phi relatively prime to e

for (int i = 0; i < 3; i++)

{ // initialize d,x,y value

array[i] = 0;

temparray[i] = 0;

}

} // end constructor

public int Modular_Exponentiation(int message)

{

Extended_Euclid(phi, e); // will return Multiplicative inverse of e modulo phi
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if (temparray[2] < 0)

temparray[2] += phi; // adjust if returned quotient is negative

// compute a^b mod n using repeated squaring and shifting

int i, k, c = 0, d = 1;

int[] bb = new int[32];

for (i = 0; i < 32; i++)

bb[i] = 0; // initialize binary representation

bb = decimal_to_binary(temparray[2]); // convert the decimal exponent into binary

k = bb.length;

for (i = k - 1; i >= 0; i--)

{

c = c * 2; // actually c is not required, just for book keeping

d = (d * d) % n; // squaring

if (bb[i] == 1)

{

c++;

d = (d * message) % n; // shifting if bit value is 1

}

}

return d;

} // method Modular_Exponentiation

private int[] decimal_to_binary(int num)

{

int[] local_array = new int[32]; // convert a decimal number to binary

int i;

for (i = 0; i < 32; i++)

local_array[i] = 0; // initialize binary array

i = 0;

while (num >= 1)

{

local_array[i] = num % 2; // store the mod value

num = num / 2; // divide the number by 2

i++; // next upper significant bit position

}

return local_array;

} // method decimal_to_binary

private int[] Extended_Euclid(int a, int b)

{

if (b == 0)

{ // compute GCD, d of a and b, as well as

temparray[0] = a; // some x and y such that d = ax + by

temparray[1] = 1;

temparray[2] = 0;

return temparray;

}

Extended_Euclid(b, a % b);

array[0] = temparray[0];
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array[1] = temparray[2];

array[2] = temparray[1] - (a / b) * temparray[2];

temparray[0] = array[0];

temparray[1] = array[1];

temparray[2] = array[2];

return array;

} // method Extended_Euclid

/***************************************************************/

} // class decrypt

import java.io.*;

import java.net.*;

class TCPClientRSAEncrypt

{

public static void main(String argv[]) throws Exception

{

String sentence;

String modifiedSentence;

BufferedReader inFromUser = new BufferedReader(new InputStreamReader(System.in));

Socket clientSocket = new Socket("10.33.10.119", 6789);

DataOutputStream outToServer = new DataOutputStream(clientSocket.getOutputStream());

BufferedReader inFromServer = new BufferedReader(new InputStreamReader

(clientSocket.getInputStream()));

System.out.println("Enter sentence to transmit using RSA ");

sentence = inFromUser.readLine();

//sends the lower case message to the encrypt method.

sentence = encryptRSA(sentence);

System.out.println("After encryption and before sending to server: " + sentence);

outToServer.writeBytes(sentence + ’\n’);

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}

public static String encryptRSA(String input)

{

encryptRSA encryptTest = new encryptRSA();

String temp = "";

for (int i = 0; i < input.length(); i++)

{

temp += encryptTest.Modular_Exponentiation(input.charAt(i))+" ";

}

return temp;

}

}
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