
EPiC Series in Computing

Volume 39, 2016, Pages 55–67

SCSS 2016. 7th International Symposium on
Symbolic Computation in Software Science

Expression Compatibility Problem

Seyed H. Haeri (Hossein)1 and Sibylle Schupp2

1 Université catholique de Louvain, Belgium hossein.haeri@uclouvain.be
2 Hamburg University of Technology, Germany schupp@tuhh.de

Abstract

We solve the Expression Compatibility Problem (ECP) – a variation of the famous Expression

Problem (EP) which, in addition to the classical EP concerns, takes into consideration the replacement,

refinement, and borrowing of algebraic datatype (ADT) cases. ECP describes ADT cases as components

and promotes ideas from Lightweight Family Polymorphism, Class Sharing, and Expression Families

Problem (EFP). Our solution is based on a formal model for Component-Based Software Engineering

that pertains to EP. We provide the syntax, static semantics, and dynamic semantics of our model. We

also show that our model solves EFP as well. Moreover, we show how to embed the model in Scala.

1 Introduction

Expression Problem (EP) [3, 26, 33] is amongst the most famous problems in the community
of Programming Languages (PLs). A wide range of EP solutions have thus far been proposed.
Consider [18, 21, 30, 32], to name a few. EP is the challenge of finding an implementation for
an algebraic datatype (ADT) – defined by its cases and the functions on it – that:

E1. is bidirectionally extensible, i.e., both new cases and functions can be added.

E2. provides strong static type safety, i.e., applying a function f on a statically constructed
ADT term t should fail to compile when f does not cover all the cases in t.

E3. upon extension, forces no manipulation or duplication to the existing code.

E4. accommodates separate compilation, i.e., compiling the extension imposes no requirement
for repeating compilation or type checking of existing code. Such static checks should not
be deferred to the link or run time either.

The main reason why EP is peculiarly recurrent in the PLs community is perhaps for it is
customary to implement the syntax of a PL as an ADT. Then, the PL semantics as well as the
analyses and transformations that pertain to the PL can all comfortably be considered functions
on that ADT. As such, EP is prudent about minimising the side effects of extending an ADT
with new cases and functions on it. However, in addition to extension, PLs also experience
the following trio: refinement, replacement, and removal of constructs. For example, C++
extended C with OOP but also refined the C scoping rules. Later on, Java removed multiple-
inheritence from C++. Finally, Scala added traits to Java, which borrows from mixins and ML
modules. Despite that, the impact of the trio is hardly studied w.r.t. EP.

J.H.Davenport and F.Ghourabi (eds.), SCSS 2016 (EPiC Series in Computing, vol. 39), pp. 55–67

mailto:hossein.haeri@uclouvain.be
mailto:schupp@tuhh.de

Expression Compatibility Problem S. H. Haeri and S. Schupp

In this paper, we introduce and solve the Expression Compatibility Problem (ECP), which
is a variation of EP that, whilst adding extra concerns about extension, takes the trio too
into consideration. Components are a cornerstone to ECP. This is because, in order to ensure
soundness properties for the trio, one needs to enforce constraints at the level of PL constructs.
The implication is modelling PL constructs using components in their Component-Based Soft-
ware Engineering (CBSE) sense. With its above demand for components that are designed for
cross-PL reuse, ECP is also a variation of the Expression Families Problem (EFP) [20]. The
next paragraph gives an outline of ECP in terms of the EP terminology. For the rest of this
paper, we dismiss the PL implementation concerns and employ the EP terminology.

ECP is the challenge of finding an implementation for an ADT that uses components to
address EP and:

EC1. is independently extensible [31, 18], i.e., it should be possible to compose independently
developed extensions.

EC2. is backward compatible, i.e., upon extension, the existing code retains its consistency and
remains available for use – specially, to the extension.

EC3. is scalable [17], i.e., adding a new case or function takes proportional code.

EC4. ensures completeness of component composition, i.e., no valid combination of components
should be rejected statically or dynamically.

EC5. statically ensures soundness of component composition, i.e., provides means to enforce
compilation failure for invalid component combinations.

EC6. is combination sensitive, i.e., distinguishes between ADT types by their component com-
binations. In particular, the type identity of a core ADT should be distinguishable from
that of its extension.

EC7. accumulates nominal subtyping, i.e., recognises the component combination c1 as a struc-
tural subtype of c2 when every case in c1 is a nominal subtype of a case in c2.

EC8. guarantees syntactic compatibility upon extension, i.e., statically rejects addition of new
cases when the syntactic category of one existing case (or more) is neither retained intact
nor refined.

EC1–EC3 and EC8 underpin new extension concerns w.r.t. EP. Refinement and removal
concerns are EC4, EC5, EC6, and EC7. Then, replacement is the focus of EC4, EC5, and EC6.

One may wonder why EC8 in presence of EC5? EC8 is particularly concerned about the
sanity of extensions; whereas EC5 is also about core combinations ab initio.
Contributions We define ECP and present a solution for it in Section 2. In Section 3,
we introduce γΦC0 as a formal solution to ECP. In summary, γΦC0: facilitates minimal shape
exposure using its family parameterisation; accommodates component late-binding using a
notion component equivalence; and, features static dependency on the ‘requires’ interface of its
components. By offering solutions to the two EFP exercises [20]1, we show how γΦC0 can be
used to solve EFP. In Section 5, we demonstrate highlights of how to simulate γΦC0 in Scala.
Paper Organsiation We begin by Section 2 where the benefits of an ECP solution are
highlighted. Afterwards, in Section 3, a formal presentation of γΦC0 is briefed. More particu-
larly, the γΦC0 syntax comes in Section 3.1. Selected parts of the γΦC0 semantics that are in
its front line of solving ECP are discussed in Section 3.2. How solving EFP can be accomplished
in γΦC0 is, then, shown in Section 4. Section 5 explains how to simulate the γΦC0 material
of this paper in Scala. Next, we explore the related work in Section 6. Finally, conclusion and
future work come in Section 7.

1designed for exhibiting the power of Modular Visitor Components (MVCs) for solving EFP

56

Expression Compatibility Problem S. H. Haeri and S. Schupp

In this paper, we only show how to employ γΦC0 for compositional analyses and transfor-
mations [11]. For how to employ γΦC0 in non-compositional scenarios, see [8, §8]. In addition,
we will follow the EP tradition of using basic integer arithmetic as the running example of this
paper. To examine the performance of our material under real research languages, the reader is
invited to consider [8]. The material that we present in this paper, including both the γΦC0 and
the Scala code, is available online at: http://www.sts.tu-harburg.de/people/hossein/ecp.html.

2 Once upon a time when ECP was already tackled. . .

This section aims to explore the potential opportunities that a solution to ECP will create for
safe reuse. That is accomplished by a rapid presentation of how γΦC0 manages ECP. On our
way, we introduce the relevant γΦC0 features and the techniques needed to get them to serve
our purpose.
Components We begin the show with the introduction of a few ADT cases. γΦC0 facili-
tates that using its special support for component definitions:
01 component Num<X C Num> {
02 int n;
03 Num(int n) {this.n = n;}
04 }
05 component Sub<X C Num⊕ Sub> {

06 X left, right;
07 Sub(X left, X right) {
08 this.left = left; this.right = right;
09 }
10 }

The code above introduces two components for ADT cases for signed integers (Num in
lines 01–04), and subtraction (Sub lines 05–10). The body of a component is like that of a
class in Igarashi et al. [12]: Line 02 above states that Num has a field n of type int. Line 03
demonstrates Num’s constructor. And, although not shown here, γΦC0 components can also
define (non-constructor) methods. Hereafter, we assume UNm for unsigned integers and Add
for addition as well. The two latter components can be obtained similarly.

Unlike an Igarashi et al. class, however, a γΦC0 component enjoys family parameterisation
too. This is for a component to express its ‘requires’ interface ([29, §17] and [23, §10]). For
example, line 05 above states that Sub ‘requires’ for its container ADT to contain Num and
Sub. (In this paper, Sub represents signed subtraction, exclusively. Hence, it ‘requires’ the
signed integer case – i.e., Num – as well.) Inside Sub’s body, the family parameter X plays the
container role and is to be substituted for a family. (See below for more.) Built-in types aside,
the only types allowed inside a component body are its family parameter (e.g., lines 06 and 07
above) and the components it ‘requires’. (For types of the latter group, see lines 02 and 05 in
EN and EU discussed later on.)
01 family Φ0 = UNm ⊕Add; 04 family Φ3 = Num ⊕ Sub;
02 family Φ1 = Num ⊕Add; 05 family Φ4 = Num ⊕Add ⊕ Sub;
03 family Φ2 = UNm ⊕ Sub; 06 family Φ5 = Sub;
//Error! Line 03: Sub requires Num too. Line 06: Sub requires Num too.

Families, EC4, and EC5 A γΦC0 family definition can be employed for an ADT intro-
duction. As shown above, a family definition is as simple as listing the components it contains.
Families Φ0, Φ1, Φ3, and Φ4 are examples of γΦC0’s support for EC4: The programmer is en-
titled to mix components in all valid ways. On the contrary, Φ3 and Φ5 attempts are statically
rejected. Those are examples of γΦC0’s support for EC5.
Clients Functions on ADTs are implemented in γΦC0 using its so-called client definitions.
The two differences between γΦC0 components and clients are as follows: Firstly, the former can
have fields as well as methods, but, the latter is only a pack of methods. Secondly, the former
takes a single family parameter, whilst, the latter can take multiple such parameters. Whilst
the first difference is displayed in this section, the second will only be discussed in Section 3.

57

http://www.sts.tu-harburg.de/people/hossein/ecp.html

Expression Compatibility Problem S. H. Haeri and S. Schupp

The code below on evaluation of integer arithmetic expressions is an example of how to define
functions on ADTs.
01 client EN <X C Num> {//signed eval
02 int eval(X.Num x,
↪→ int e(X)){return x.n;}
03 }

04 client EU <X C UNm> {//unsigned eval
05 uint eval(X.UNm x,
↪→ uint e(X)){return x.n;}
06 }

The most noteworthy point about the two clients above is that they only handle their own
part of evaluation. Note that, in order to handle a case, explicit nomination of the case is
required. The consequence, which was also stated earlier on, is that: any attempt to handle
other cases than the ones nominated in the ‘requires’ interface will be statically rejected. For
example, would it happen that the programmer mistakenly chooses to handle subtraction in
EN, a compile error will be emitted. The second parameter of eval (in lines 02 and 05 above)
represents the complete evaluation recipe, the role of which will become more clear below.

//signed integer and addition eval
01 client ENA<X C Num⊕Add>{
02 int eval(X x, int e(X)){
03 return x match {
04 case X.Add ⇒

↪→ e(x.left) + e(x.right);
05 case X.Num ⇒
↪→ EN <X as Num>.eval(x, e);
06 } } }

Consider line 04 above, where the joy of compositional evaluation and component-based
development are experienced in tandem: Not having the complete recipe, it leaves evaluation of
subexpressions to the parameter e. At the same time, only the addition case is handled by that
line. The action of line 05 is slightly different, where handling the case (of signed integers) is
relayed to the eval method of EN. More remarkable is the use of family parameter projection for
the relaying. When not all the components of ‘requires’ interface are to be passed in the exact
same order, γΦC0 demands explicit nomination of the relevant ones. Otherwise, the family
parameter alone can be nominated. (See Eval1 and Eval4 below.)

EC7 and EC8 Line 05 above also demonstrates another important property of γΦC0, i.e.,
how it addresses EC7: It is legal for ENA to reuse the EN methods for its ‘requires’ interface
is a superset of that of EN. The dual of that is how the following piece of code fails statically
due to γΦC0’s implementation of EC8.
01 client BadENA<X C Num⊕Add> {
02 . . . EU <???>.eval(. . .);//Error! Invalid projection.

03 }
The reader is invited to take their time to observe that no valid combination of the components
in the ‘requires’ interface of BadENA can be substituted for ??? in line 02.

EC1 Due to its similarity, we drop the definition of ENS<X C Num⊕ Sub> to move to the
demonstration of how γΦC0 addresses EC1 as a function concern. The lines 04 and 05 below
show how ENAS composes independently developed extensions of EN, i.e., ENA and ENS. (It
is trivial to observe that γΦC0’s family definition facility addresses EC1 as a case concern.)
01 client ENAS<X C Num⊕Add⊕ Sub> {
02 int eval(X x, int e(X)){
03 return x match {
04 case X.Add ⇒
↪→ ENA<X as Num ⊕Add>.eval(x, e);

05 case X.Sub ⇒
↪→ ENS<X as Num ⊕ Sub>.eval(x, e);
06 case X.Num ⇒
↪→ EN <X as Num>.eval(x, e);
07 } } }

Tests In order to bring the above clients to action for the defined families, one first ties the
recursive knot. Eval1 and Eval4 below demonstrate that for Φ1 and Φ4, respectively:
01 client Eval1<X C Num ⊕Add>{
02 int do it(X x){
03 return ENA<X>.eval(x, do it);
04 } }

05 client Eval4<X C Num ⊕Add ⊕ Sub>{
06 int do it(X x){
07 return ENAS<X>.eval(x, do it);
08 } }

58

Expression Compatibility Problem S. H. Haeri and S. Schupp

Then, one instantiates the clients using the families defined earlier. Here are some tests:
01 val tpf 1 = new Add<Φ1>(new Num<Φ1>(3), new Num<Φ1>(5));
02 val tpf 3 = new Add<Φ3>(new Num<Φ3>(3), new Num<Φ3>(5));//Error! Φ3 doesn’t provide Add.
03 Eval1<Φ1>.do it(tpf 1); //Returns 8.
04 val tpf 4 = . . . //3 + 5 for Φ4

05 val tpfmo4 = new Sub<Φ4>(tpf 4, new Num<Φ4>(1));
06 Eval4<Φ4>.do it(tpf 4); //Returns 8.
07 Eval1<Φ4>.do it(tpf 4); //Error! Sub case of Φ4 unmatched by Eval1.
08 Eval4<Φ4>.do it(tpfmo4); //Returns 7.
09 Eval1<Φ4>.do it(tpfmo4); //Error! Sub case of Φ4 unmatched by Eval1.
10 Eval1<Φ4 as Add ⊕Num>.do it(tpf 4); //Returns 8.
11 Eval1<Φ4 as Add ⊕Num>.do it(tpfmo4);//Error! tpfmo4 has other Φ4 cases than Num and Add.

Other ECP Concerns We end by briefly explaining γΦC0 on the remaining ECP con-
cerns. The support for EC2 is obvious for addition of new components and clients has no effect
on existing programs. γΦC0 does also clearly support EC3: Addition of a new case amounts to
defining the respective single component; addition of a new function on n cases (e.g., pretty-
printing) amounts to defining (at most) n new clients for the corresponding cases and a single
client to tie the recursive knot. Understanding that γΦC0 addresses EC6 is also easy: Defining
a new ADT (e.g., an extension to an existing one) is a matter of defining a new γΦC0 family.
Such an addition influences no existing family (especially, that of the core ADT, if any). A
family is distinguishable from other families (including its core, if any) by its name. On the
contrary, clients are equally (un-)available to families with identical component combinations.

Remark 1. Although after tying the knot for Eval1 or Eval4 , they are no longer extensible,
that is not a failure in addressing EP. The reason is that the service that was available to Φ1

and Φ4 essentially come from ENA and ENAS, which remain extensible upon tying the knot.

3 Excerpts from γΦC0: A Formal Solution to ECP

As a PL, γΦC0 is highly inspired by the popular informal models of CBSE. γΦC0 is, however,
especially tuned for ECP. The opening discussion of this section will delve into the design
choices made accordingly. From a PL designer’s perspective, on the other hand, one would
be interested in finding out about the axes along which to tweak the PL for reuse. In the
favour of that interest, over the opening discussion, we further elaborate on the two sources of
polymorphism in γΦC0. After the opening discussion, selected parts of the γΦC0 syntax and
semantics are presented in Sections 3.1 and 3.2. For a complete account of γΦC0, consult [10].
We now move to the opening discussion itself.

The γΦC0 world has three major role-players: components, families, and clients. A γΦC0

component takes after its well-known CBSE identity by specifying its ‘requires’ and ‘provides’
interfaces. It specifies its ‘requires’ interface using family parameterisation. The ‘provides’
interface of a γΦC0 component is specified just like a familiar OOP class. γΦC0 families are
simply defined as a collection of their respective components. Clients in γΦC0 are pieces of
code that are applicable to any family, provided that the family contains the specified minimal
component combination. This is the first source of polymorphism in γΦC0: A client (or com-
ponent) code can be reused amongst all such families (but, not other ones). We refer to this
property as the minimal shape exposure. Again, γΦC0 uses family parameterisation to that
end. Minimal shape exposure is particularly geared towards EC4, EC5, and EC6.

Polymorphism in γΦC0 comes from another source as well: component late-binding. The
family parameterisation used for a γΦC0 component or client enforces the availability of certain

59

Expression Compatibility Problem S. H. Haeri and S. Schupp

components. Instead of providing the exact requested components, however, the family is free
to mix an equivalent component in. As such, the exact behaviour of a family-parameterised
code is not known until the actual family used for instantiation is provided. This is our notion
of component late-binding. This source of polymorphism serves EC7 and EC8 most specifically.

By specifying its ‘requires’ interface using family parameterisation, a γΦC0 client (or com-
ponent) determines the component combination it expects from the family that is going to use
it. The client (or component) code, then, will be statically bound to the requested combination.
Inside the body of a client (or component), any attempt to access unrequested components is
outlawed statically. We refer to this feature as static dependency on the ‘requires’ interface.

3.1 The γΦC0 Syntax

Dγ ::= component γ<X C ⊕γ 6C γ> C {Rf; K mγ} component definition

DC ::= client C<X C ⊕γ>{mC} client definition
DΦ ::= family Φ = ⊕γ family definition

τ ::= DΦ;I.mC(v) test

Above comes part of the γΦC0 syntax. γ ranges over components, C over clients, K over
constructors, m over methods, e over expressions, f over fields, Φ over families, and X over
family parameters. Priming a syntactic metavariable or subscripting it with numbers does not
change its syntactic category. When distinction between a metavariable of a component and
that of a client is required, we use subscripts γ and C. When referring to both categories
collectively, we drop the subscript. For example, mγ and mC denote component methods
and client methods, respectively, but m can be either an mγ or an mC . Note that neither
subscript is related to a particular component γ or client C instance. Following the tradition of
lightweight family polymorphism (Section 6), the overline notation is used for a list of entities
and #(.) for the length of a list. For example, for some known n: γ denotes γ1γ2 . . . γn. The
notation γ is also overloaded to mean the list γ1, γ2, . . . , γn, when appropriate. We extend that
notation for ⊕γ to mean γ1 ⊕ γ2 ⊕ . . . γn. We overload the notation one further step to mean
X1 C ⊕γ1, X2 C ⊕γ2, . . . , Xn C ⊕γn by X C ⊕γ. Both clients and components take family
parameters. The notation X C ⊕γ stipulates that the family to be substituted for X has to
include components (that are equivalent to) γ1, γ2, . . . , γn. In such a case, we say that ⊕γ is the
upper bound of X. When γ is an upper bound of X, the relative type X.γ – read the component
γ of X – is the component substituted for γ when substituting a family for X.

The syntax for introduction of a family is as simple as enumerating the components it
combines, interleaved by “⊕”. To test a client on a family, one calls a method of a client by
passing appropriate arguments to the method. To that end, either the whole family is used for
client instantiation (C< · · · ,Φ, · · · >) or a projection of it (C< · · · ,Φ as ⊕ γ, · · · >). Note that,
unlike components, we choose clients to store no data and simply act as a collection of methods.
As such, clients need no constructors. A test τ contains a sequence of family introductions and a
single call to a method of a client instantiated by the introduced families (or their projections).
A γΦC0 program is a test along with the components and clients that it uses.

3.2 How does γΦC0 address ECP?

This section gives a very short overview of the parts of the γΦC0 static semantics that help it
solve ECP: the rules (T-Invk3) and (WF-Family) below. Due to space constraints, we will
only explain those two rules in the context of how they address a selection of the ECP concerns:
EC4, EC5, EC7, and EC8. The interested reader is referred to [10] for more.

60

Expression Compatibility Problem S. H. Haeri and S. Schupp

Γ;C ` e : Re fps(C′) = X ′ #X ′ = #S

C ` ssfp(S,X ′, C′) ok mtype(mC , C
′) = R′ → R′

R = R′[C
[S/X′]−−−−→ C′] C ` Re <:R R = R′[C

[S/X′]−−−−→ C′]
(T-Invk3)

Γ;C ` C′<S>.mC(e) : R

γ = fpub∗(Φ) sat-by(γ,Φ) non-conf(γ)
(WF-Family)

family Φ = · · · ok

The clauses used in the above rules are likely to look extraordinarily compact to the un-
trained eye. Before we get into the intuition behind each rule, we would like to invite the reader
to check the names of the helper functions used: fps = family parameters, ssfp = substitution
of family parameter selection for family parameter, mtype = method type, fpub = family pa-
rameter upper bound, sat-by = satisfied by, and non-conf = non-conflicting. We would also
like to invite them to follow the comprehensions used:

Γ;C ` e : Re for Γ;C ` e1 : Re1 , . . . ,Γ;C ` en : Ren ,
C ` ssfp(S,X ′, C ′) ok for C ` ssfp(S1, X

′
1, C

′) ok, . . . , C ` ssfp(Sn, X
′
n, C

′) ok,
C ` Re <:R for C ` Re1 <:R1, . . . , C ` Ren <:Rn,

R′[C
[S/X′]−−−−→ C ′] for ((R′[C

[S1/X
′
1]−−−−−→ C ′]) · · · [C [Sn/X

′
n]−−−−−→ C ′]), and

R = R′[C
[S/X′]−−−−→ C ′] for R1 = R′1[C

[S/X′]−−−−→ C ′], . . . , Rn = R′n[C
[S/X′]−−−−→ C ′].

With its number of premises the rule (T-Invk3) might look daunting at the first sight.
Below, we explain it informally in a top-down and left-to-right fashion. The rule states that,
within the body of a client C, in order for a call to a method mC of C ′ to return a value of
type R: The argument types Re need to be determined (Γ;C ` e : Re); the passed selections
S to C ′ need to have the right number (fps(C ′) = X ′ and #X ′ = #S); the pass of all
selections S from C to their same-indexed family parameter amongst X ′ of C ′ needs to be valid
(C ` ssfp(S,X ′, C ′) ok); the parameter types R′ of mC in C ′ need to be adapted to C for R

to be obtained (R = R′[C
[S/X′]−−−−→ C ′]); the argument types Re need to all be subtypes of (or

equal to) their same-indexed R type (C ` Re <:R); and, the return type R′ of mC in C ′ needs

to be adapted for R to be obtained (R = R′[C
[S/X′]−−−−→ C ′]). The rule (WF-Family) states that

for a family Φ to be well-formed: The components γ that are directly or indirectly requested
by the components combined to obtain Φ – i.e., fpub∗(Φ) – must all (either themselves or an
equivalent of theirs) exist in Φ (sat-by(γ,Φ)); and, that there must be no conflict between the γ
(namely, non-conf(γ)). Here is a sketch of how the above rules address the promised concerns.

EC4. The respective rule of this concern is (WF-Family), with the key role player being
sat-by(γ,Φ). This clause pronounces Φ sound so long as it does provide all the requested
components (or equivalents of theirs).

EC5. Again, the respective rule here is (WF-Family). Albeit, the role of non-conf(γ) is more
important for this concern. This clause makes sure that there is no conflict between the
components combined to produce a family.

EC7. The respective rule of this concern is (T-Invk3). It is the C ` ssfp(S,X ′, C ′) ok clause
in the premises of that rule that is the most important here. The explicit correspondence
between S and X ′ is the evidence submitted (by the programmer) for C to be a structural
subtype of C ′. As such, the reuse of the method mC of C ′ by C is authorised by that clause.

61

Expression Compatibility Problem S. H. Haeri and S. Schupp

For every family parameter X ′i of C ′, the above clause checks whether the substitution of
the selection Si of C is valid for X ′i of C ′.

EC8. The respective rule and key clause of this concern are the same as those of the previous
concern. In order to explain how this concern is addressed, however, we need to zoom into
C ` ssfp(S,X ′, C ′) ok. Generally, a clause C ` ssfp(X as ⊕ γ,X,C ′) ok uses a premise
valid-as(C,X,⊕γ) that ensures the following: Projection of a family parameter X of C to
⊕γ is valid. As such, it will reject the reuse of the method mC of C ′ otherwise.

Note that we write sat-by(γ,Φ) when ∃γ′ ∈ Φ. γ
s≡ γ′. (The symbol “

s≡” used here is
our notion of component equivalence, which we will not delve into in this paper.) In words,
sat-by(γ,Φ) checks whether Φ does indeed mix a component (that is equivalent to) γ.

4 Expression Families Problem

In his seminal work on EFP [20], Oliveira provides two self-contained examples that obviate
the necessity of solving EFP and the strength of MVCs: Equality Tests and Narrowing. We
claimed in the Introduction that ECP is a variation of EFP. The first goal of this section
is to substantiate that claim by offering γΦC0 solutions to Equality Tests and Narrowing in
Sections 4.1 and 4.2, respectively. The second goal of this section is to get the reader to observe
how straightforward of a solution to EFP a solution to ECP is.

4.1 Equality

The purpose of the Equality Test exercise is to provide a statically safe solution for multiple
dispatching that is also extensible. Like that of Oliveira, we offer a solution that simulates
multi-methods [1, 2]. The driving example is structural equality between expressions. The test
on Num, Add, and Sub is performed as follows: (1) equal(Num(n),Num(n′)) = (n == n′), (2)
equal(Add(e1, e2),Add(e′1, e

′
2)) = equal(e1, e

′
1)∧equal(e2, e

′
2), (3) equal(Sub(e1, e2),Sub(e′1, e

′
2)) =

equal(e1, e
′
1) ∧ equal(e2, e

′
2), and (4) equal(,) = ⊥.

Such a formula is typically implemented as a pattern matching on the two expressions to-
gether. Using a familiar pattern matching, the implementation will, however, lose extensibility.
To prevent that loss, our solution is first to decentralise the pattern matching by implement-
ing each case using a single client. Then, one integrates as many of such clients as appropriate
in another client, which also ties the recursive knot. EqNum below is the equality client that
corresponds to (1):
01 client EqNum<X C Num> {
02 bool eq(X.Num x1, X.Num x2, bool e(X,X)){return x1.n == x2.n;}
03 }

Note that both EqNum only takes care of its own part of decentralisation. In a similar
manner, one implements EqAdd<X C Add>, EqSub<X C Sub ⊕ Num>, and EqDef<X C ε> for
the other cases. Due to minimal shape exposure of X, none of the above four equality clients
sees more than its pertinent part of the recipe. Nevertheless, for usage at the appropriate
point (e.g., line 2 above), provisional access to the complete recipe is granted to them via their
parameter e. The complete recipe itself can only be obtained upon tying the recursive knot,
which referred to as the integration. Eq1 below integrates the appropriate clients for Φ1:
01 client Eq1<X C Num⊕Add>{
02 bool equal(X x1, X x2) {
03 return (x1, x2) match {
04 case (X.Num, X.Num)⇒ EqNum<X as Num>.eq(x1, x2, equal);

62

Expression Compatibility Problem S. H. Haeri and S. Schupp

05 case (X.Add, X.Add)⇒ EqAdd<X as Add>.eq(x1, x2, equal);
06 case ⇒ EqDef<X as ε>.eq(x1, x2, equal);
07 } } }
Likewise, one implements Eq4 to integrate clients for Φ4 and perform the following tests:
01 val tpfive1 = . . . //3 + 5 for Φ1

02 val tpfour1 = . . . //3 + 4 for Φ1

03 Eq1<Φ1>.equal(tpfive1, tpfour1) //Returns ⊥.
04 Eq4<Φ4>.equal(tpf4, tpfmo4) //Returns ⊥.

Observe how the technique caters for extensibility by leaving open the possibility of mixing-
in new equality clients without the need to touch the existing equality cases. Note that, in this
very case, the structural exercise happened to come with a default case. Section 4.2 contains
an example where our solution works in the absence of default cases.

4.2 Conversion and Narrowing

Following Oliveira [20], we say an expression is narrowed when all its ADT cases of a given
group are cancelled into other case combinations that are deemed to be equivalent. It is common
in the PL design community to provide extensions to a core PL such that the extension programs
would then be narrowed to the core (for evaluation and the like). Oliveira shows how his MVCs
can be leveraged in favour of correctness for narrowing as a static guarantee that the result of
this process will not contain instances from the unwanted ADT cases; it will instead contain
other case combinations that are deemed equivalent. In this section, we generalise the narrow-
ing exercise to conversion from one ADT to another. In particular, we will craft a conversion
[[.]] from an ADT with subtraction to an ADT with addition and negation (of signed integers):
[[e1 − e2]] = [[e1]] + (−([[e2]])). We assume a component Neg<X C Num ⊕ Neg> for negation.
Then, we implement the decentralised pattern matching clients: N2N <X1 C Num, X2 C Num>

to convert Num to Num, G2G<X1 C Num ⊕ Neg, X2 C Num ⊕ Neg> to convert Neg to Neg,
and A2A<X1 C Add, X2 C Add> to convert Add to Add. The only non-identical conver-
sion is that of subtraction expressions to the equivalent combination of addition and negation:
01 client S2AN <X1 C Num⊕ Sub, X2 C Num⊕Add⊕Neg> {
02 X2 convert(X1.Sub x1, X2 c(X1)) {
03 return new Add<X2>(c(x1.left), new Neg<X2>(c(x1.right)));
04 } }

In the snippet above, X1 and X2 are the family parameters corresponding to the first
and the second ADT, respectively. Furthermore, the parameter c of convert in line 02 is
the function that devises the complete conversion recipe. The integration is not largely new:
01 client ConvSub<X1 C Num⊕Add⊕ Sub⊕Neg, X2 C Num⊕Add⊕Neg> {
02 X2 doit(X1 x1) {
03 return x1 match {
04 case X1.Num⇒ N2N<X1 as Num, X2 as Num>.convert(x1, doit);
05 case X1.Neg⇒ G2G<X1 as Num⊕Neg,
↪→ X2 as Num⊕Neg>.convert(x1, doit);
06 case X1.Add⇒ A2A<X1 as Add, X2 as Add>.convert(x1, doit);
07 case X1.Sub⇒ S2AN<X1 as Num⊕ Sub,
↪→ X2 as Num⊕Add⊕Neg>.convert(x1, doit);

08 } } }
Narrowing would, then, be a simple application of the above conversion from an ADT to

the appropriate projection of the same ADT:
01 client NarrowSub<X C Num⊕Add⊕ Sub⊕Neg> {
02 X doit(X x) {
03 return ConvSub<X, X as Num⊕Add⊕Neg>.doit(x);
04 } }

Supposing the availability of the two families below

63

Expression Compatibility Problem S. H. Haeri and S. Schupp

01 family Φ6 = Num⊕Add⊕ Sub⊕Neg; 02 family Φ7 = Num⊕Add⊕Neg;

finally, can one perform the following tests:
val tpfmone6 = . . . //(3 + 5)− 1 for Φ6

ConvSub<Φ6,Φ7>.doit(tpfmone6) //Returns (3 + 5) + (−(1)) for Φ7.
NarrowSub<Φ6>.doit(tpfmone6) //Returns (3 + 5) + (−(1)) for Φ6.

5 Implementation

Whilst γΦC0 still has no dedicated implementation (say a stand-alone compiler and an IDE),
an embedding of its is indeed possible in Scala. Details of how to set up a complete Scala
codebase for this purpose can be found in our earlier works: [9] and [8, §7 and §8]. In this
section, we only explain what Scala code corresponds to what γΦC0 element of Section 2.

The presentations in this paper are all in Scala. However, the same solutions can be used in
any host PL providing multiple inheritance and type constraints. We use multiple inheritance
for our cases to state their syntactic categories in addition to the ADT they are a case of. Type
constraints are used as our means for checking soundness of component combinations. The Scala
elements that we use here are those initially presented in [19]. Our implementation, however,
is rather inspired by Lightweight Modular Staging (LMS) [27]. From another viewpoint, the
implementation can also be regarded as a Scala simulation for Polymorphic Variants [6].

We start by the correspondent of a γΦC0 component: an ordinary Scala class with specially-
wired type parameterisation. Below is the Sub class for the Section 2 Sub component.

1 class Sub[
2 E <: IAE[E], N <: Num[E, N] with E, S <: Sub[E, N, S] with E
3](left: E, right: E)

Recall that the family parameterisation of Sub was X C Num ⊕ Sub. The translation of
that is what comes in line 2 above. In their order of appearance: E represents X, N represents
X.Num, and S represents X.Sub. In Scala, the uses of <: in line 2 above demand nominal
subtyping. (More on IAE later.) Part of the verbosity in the type annotations in line 2 above is
because of the idiosyncrasies of JVM that dictate similar F-Boundings to the Scala type system
in return of correctness.

1 trait Phi4 extends IAE[Phi4]
2 case class Num4(n: Int) extends Num[Phi4, Num4](n) with Phi4
3 case class Add4(left: Phi4, right: Phi4) extends ...
4 case class Sub4(left: Phi4, right: Phi4) extends ...

The Scala counterpart of the Φ4 definition is even more verbose. The trait Phi4 in line
1 above is like the “family Φ4” part of the family definition. IAE is our interface for integer
arithmetic expressions. An ADT that is to use the arithmetic expression cases needs to tie
the F-Bound knot of IAE in a similar fashion. Lines 2 to 4 add the Num, Add, and Sub cases
to Phi4, respectively. Notice how, unlike γΦC0 in which Φ4 simply bundles its appropriate
components together, in Scala, one cannot reuse the exact same component names for the cases
of Phi4. For instance, the code above calls the Add case Add4 (as opposed to just Add).

1 class ENAS[
2 E <: IAE[E], N <: Num[E, N] with E,
3 A <: Add[E, A] with E, S <: Sub[E, N, S] with E
4] {
5 def eval(x: E, e: E => Int): Int = x match {
6 case _: Add[_, _] => new ENA[E, N, A].eval(x, e)

64

Expression Compatibility Problem S. H. Haeri and S. Schupp

7 ...
8 } }

The code above is the Scala counterpart for ENAS of Section 2. For the first difference,
note the “ :” before Add at line 6. In Scala, in addition to their types, patterns need names.

1 object test2 {
2 val three_plus_five4 = Add4(Num4(3), Num4(5))
3 def run1 = new Eval4[Phi4, Num4, Add4, Sub4].do_it(three_plus_five4)
4 }

Finally, three_plus_five4 above constructs a corresponding expression for 3 + 5 in Φ4.
Note the interesting advantage gained by the tight binding of Add4 to Phi4: Unlike tpf 4 that
requires explicit mention of Φ4 at every component instantiation, explicit mention of Phi4 is
absent in Add4 and Num4 uses in line 2. On the contrary, for Phi4 has no knowledge about
its cases, in line 3 above, one needs to redundantly list the cases of Phi4 upon instantiation of
Eval4 for it. Contrast that to γΦC0 version where the sole mention of Φ4 suffices.

6 Related Work

Family Polymorphism [4, 5] aims to ensure that certain interrelationships between the con-
stituents of a system – referred altogether as a family – are all extension-invariant. Support for
EC1 and EC2 is clear. Given its difficulties in cross-family class sharing [15], whether Family
Polymorphism can also support EC3 is hard to judge. With its absence of a clear counterpart
for components, we cannot assess how addressable the remaining ECP concerns are.

Jx [16] starts a series of works on sharing nested classes amongst families. J& [17] generalises
to intersection types and extension composition (cf. EC1). Of the ECP concerns, it also
addresses EC3 and EC2. In J&s [24], sharing of classes amongst families is nomination-based
but not exclusively hierarchical. J&h [25] moves to homogeneous class sharing, where a core
family and all its extensions are equivalent, probably risking EC2.

Having observed the heavy workload of family polymorphism in certain circumstances, .FJ
[28] presents lightweight family polymorphism, which addresses EC2 and EC3. It does not
address EC1 because .FJ only supports extension using single (nominal) inheritance of top-level
families. For its lack of counterpart for components, the rest of ECP concerns are irrelevant
to .FJ. Then, FGJ# [13] presents type parameter members to alleviate the monolithicity of
(lightweight) family polymorphism in that family members are inseparable from their enclosing
families. Whether FGJ# supports EC4, EC7, and EC8 is not known. On the other hand,
for similar reasons to .FJ, FGJ# addresses EC2 and EC3 but not EC1. Its move towards
components shapes an interesting behaviour w.r.t. the rest of ECP concerns. It can simulate
them all so long as an ADT interface hard-wires the relevant requirements. X.FGJ [14] is the
next work of this group. X.FGJ is in remarkable proximity to γΦC0with its member interfaces
and families, which take one further step toward getting component-based. Nevertheless, X.FGJ
scores alike FGJ# regarding the ECP concerns.

Oliveira was the first to frame EFP. He also offered MVCs [20] as an EFP solution. Oliveira
and Cook [21] back this work up by the powerful and simple concept of object algebras. Later,
Oliveira et al. [22] try to address awkwardness issues faced in their former paper upon com-
position of object algebras. Which element in the latter two works to compare against γΦC0

components (and families) is not straightforward to us. With that uncertainty, here, we only
concentrate on Oliveira’s seminal work. MVCs address all EC concerns except EC3, EC5, and
EC8, although, their support for EC7 is doubtful for its reverse direction [8].

65

Expression Compatibility Problem S. H. Haeri and S. Schupp

Of the rich literature on EP we only consider a couple that we deem close enough to this
paper. Polymorphic Variants [6, 7] solve EP using global case definitions that, at their point
of definition, become available to every ADT defined afterwards. They address all the ECP
concerns except EC5 and EC6. Yet, from ECP’s standpoint, their most important unavailable
factor is a notion of components. Rompf and Odersky [27] employ a fruitful combination of the
Scala features to present a very simple yet effective solution to EP using LMS. The support
of LMS for E2 can be easily broken using an incomplete pattern matching, and is debatable.
Although LMS is not based on components, it scores all the ECs except EC5, EC6, and EC8.

7 Conclusion and Future Work

In this paper, we introduce ECP by formulating its eight concerns (Section 1). We show the
benefits of solving ECP along with a technology used to solve it (Section 2). We present the
syntax and semantics of γΦC0 as a formal solution to ECP. We summarise what key role the
γΦC0 semantics plays in solving ECP (Section 3.2). Furthermore, we show how γΦC0 can
be used for a solution to EFP (Section 4). Next, we explain how to simulate γΦC0 in Scala
(Section 5). Finally, the relevant literature is discussed in Section 6.

The immediate future work to this paper is proving the standard theoretical results (e.g.,
subject reduction, progress, and type soundness) about γΦC0. As stated in the introduction,
ECP is a variation to EP. As such, γΦC0 is the first PL with a formal semantics that is designed
for solving EP. It is tempting to try formal proofs for that claim. An extended future work
would, then, be flourishing Section 3.2 to formal proofs for γΦC0 solving ECP. A fresh look into
the paper reveals that it also introduces a new variation on family polymorphism that we would
call component family polymorphism. Implementing γΦC0 is the other obvious future work of
this paper. That would form an interesting test bed for component family polymorphism.

References

[1] C. Chambers and G. T. Leavens, Typechecking and Modules for Multimethods, TOPLAS 17 (1995),
no. 6, 805–843.

[2] C. Clifton, G. T. Leavens, C. Chambers, and T. D. Millstein, MultiJava: Modular Open Classes
and Symmetric Multiple Dispatch for Java, Proc. 15th OOPSLA (Minneapolis, Minnesota, USA),
ACM, 2000, pp. 130–145.

[3] W. R. Cook, Object-Oriented Programming Versus Abstract Data Types, Proc. FOOL (Noordwi-
jkerhout (The Netherlands)) (J. W. de Bakker, W. P. de Roever, and G. Rozenberg, eds.), LNCS,
vol. 489, 1990, pp. 151–178.

[4] E. Ernst, Family Polymorphism, Proc. 15th ECOOP (J. Lindskov Knudsen, ed.), LNCS, vol. 2072,
Springer, June 2001, pp. 303–326.

[5] , Reconciling Virtual Classes with Genericity, Proc. 7th JMLC (D. E. Lightfoot and C. A.
Szyperski, eds.), LNCS, vol. 4228, Springer, September 2006, pp. 57–72.

[6] J. Garrigue, Programming with Polymorphic Variants, Proc. 5th W. ML (X. Leroy and D. Mac-
Queen, eds.), Baltimore, MD, USA, September 1998.

[7] , Code Reuse through Polymorphic Variants, W. Found. Soft. Eng., no. 25, 2000, pp. 93–100.

[8] S. H. Haeri, Component-Based Mechanisation of Programming Languages in Embedded Settings,
Ph.D. thesis, Inst. Soft. Sys., Hamburg U. Tech., Germany, December 2014.

[9] S. H. Haeri and S. Schupp, Reusable Components for Lightweight Mechanisation of Programming
Languages, Proc. 12th SC (W. Binder, E. Bodden, and W. Löwe, eds.), LNCS, vol. 8088, Springer,
June 2013, pp. 1–16.

66

Expression Compatibility Problem S. H. Haeri and S. Schupp

[10] , Expression Compatibility Problem – Extended Version, Technical Re-
port, Inst. Soft. Sys., Hamburg U. Tech., June 2014, available online at
http://archive.org/edit/ExpressionCompatibilityProblem.

[11] C. Hofer and K. Ostermann, Modular Domain-Specific Language Components in Scala, Proc. 9th

GPCE (Eindhoven, The Netherlands) (E. Visser and J. Järvi, eds.), ACM, 2010, pp. 83–92.

[12] A. Igarashi, B. C. Pierce, and P. Wadler, Featherweight Java: A Minimal Core Calculus for Java
and GJ, TOPLAS 23 (2001), no. 3, 396–450.

[13] T. Kamina and T. Tamai, A Design and Implementation of Lightweight Constructs for Mutually
Extensible Components, (2008), Submitted Jan. 2008 to Elsevier.

[14] , Lightweight Dependent Classes, Proc. 7th GPCE (Nashville, TN, USA) (Y. Smaragdakis
and J. G. Siek, eds.), ACM, October 2008, pp. 113–124.

[15] A. B. Madsen and E. Ernst, Revisiting Parametric Types and Virtual Classes, Proc. 48th TOOLS
(J. Vitek, ed.), LNCS, vol. 6141, Springer, June 2010, pp. 233–252.

[16] N. Nystrom, S. Chong, and A. C. Myers, Scalable Extensibility via Nested Inheritance, Proc. 19th

OOPSLA (J. M. Vlissides and D. C. Schmidt, eds.), ACM, October 2004, pp. 99–115.

[17] N. Nystrom, X. Qi, and A. C. Myers, J&: Nested Intersection for Scalable Software Composition,
Proc. 21st OOPSLA (Portland, Oregon, USA), ACM, 2006, pp. 21–36.

[18] M. Odersky and M. Zenger, Independently Extensible Solutions to the Expression Problem, Proc.
FOOL, January 2005.

[19] , Scalable Component Abstractions, Proc. 20th OOPSLA (San Diego, CA, USA), ACM,
2005, pp. 41–57.

[20] B. C. d. S. Oliveira, Modular Visitor Components, Proc. 23rd ECOOP, LNCS, vol. 5653, Springer,
2009, pp. 269–293.

[21] B. C. d. S. Oliveira and W. R. Cook, Extensibility for the Masses – Practical Extensibility with
Object Algebras, Proc. 26th ECOOP, LNCS, vol. 7313, Springer, 2012, pp. 2–27.

[22] B. C. d. S. Oliveira, T. van der Storm, A. Loh, and W. R. Cook, Feature-Oriented Programming
with Object Algebras, Proc. 27th ECOOP (Montpellier, France) (Giuseppe Castagna, ed.), LNCS,
vol. 7920, Springer, 2013, pp. 27–51.

[23] R. S. Pressman, Software Engineering: A Practitioner’s Approach, 7th ed., McGraw-Hill, 2009.

[24] X. Qi and A. C. Myers, Sharing Classes between Families, Proc. PLDI (M. Hind and A. Diwan,
eds.), ACM, June 2009, pp. 281–292.

[25] , Homogeneous Family Sharing, Proc. 25th OOPSLA (Reno/Tahoe, Nevada, USA) (W. R.
Cook, S. Clarke, and M. C. Rinard, eds.), ACM, October 2010, pp. 520–538.

[26] J. C. Reynolds, User-Defined Types and Procedural Data Structures as Complementary Approaches
to Type Abstraction, New Dir. in Algo. Lang. (S. A. Schuman, ed.), 1975, pp. 157–168.

[27] T. Rompf and M. Odersky, Lightweight Modular Staging: a Pragmatic Approach to Runtime Code
Generation and Compiled DSLs, Proc. 9th GPCE (Eindhoven, The Netherlands), ACM, 2010,
pp. 127–136.

[28] C. Saito, A. Igarashi, and M. Viroli, Lightweight Family Polymorphism, JFP 18 (2008), no. 3,
285–331.

[29] I. Sommerville, Software Engineering, 9th ed., Addison Wesley, 2011.

[30] W. Swierstra, Data Types à la Carte, JFP 18 (2008), no. 4, 423–436.

[31] C. Szyperski, Independently Extensible Systems – Software Engineering Potential and Challenges,
Proc. 19th Australasian Comp. Sci. Conf., 1996.

[32] M. Torgersen, The Expression Problem Revisited, Proc. 18th ECOOP (Oslo (Norway)) (M. Oder-
sky, ed.), LNCS, vol. 3086, June 2004, pp. 123–143.

[33] P. Wadler, The Expression Problem, Java Genericity Mailing List, November 1998.

67

http://archive.org/edit/ExpressionCompatibilityProblem

	Introduction
	Once upon a time when ECP was already tackled…
	Excerpts from C0: A Formal Solution to ECP
	The C0 Syntax
	How does C0 address ECP?

	Expression Families Problem
	Equality
	Conversion and Narrowing

	Implementation
	Related Work
	Conclusion and Future Work

