
EPiC Series in Computing

Volume 38, 2016, Pages 52–62

Proceedings of the 1st and 2nd Vampire Workshops

Reasoning About Loops Using Vampire∗

Laura Kovács and Simon Robillard

Chalmers University of Technology, Gothenburg, Sweden

Abstract

In 2009, the symbol elimination method for loop invariant generation was introduced [8], which
used saturation theorem proving in first-order logic to generate quantified invariants of programs with
arrays. Symbol elimination is fully automatic, requires no user guidance, and it is the first ever
approach able to generate invariants with alternations of quantifiers. In this paper we describe a
number of improvements and extensions to symbol elimination and invariant generation using first-
order theorem proving, in particular the Vampire theorem prover. Rather than being limited to a
specific programming language, our approach to reasoning about loops in Vampire relies on a simple
guarded command language for its input, which can be used as an interface for more complex and
realistic imperative languages. We propose new ways for extending quantified loop properties describing
valid loop properties, by simplifying the properties over array updates and next state relations. We
also extend symbol elimination with pre- and post-conditions of loops. We use the loop specification
to generate only invariants that are relevant, that is, invariants that are needed for proving partial
correctness of loops. Further, we turn symbol elimination into an automatic approach proving program
correctness, providing an alternative method to Hoare-rule based loop verification or other deductive
systems. We present our newly redesigned implementation of loop reasoning in Vampire and report on
experimental results.

1 Introduction
In [8], the symbol elimination method for generating invariants was introduced. The approach
uses saturation theorem proving to generate quantified invariants, possibly with quantifier al-
ternations, for programs with unbounded data structures such as arrays. Implementations of
symbol elimination using the first-order theorem prover Vampire [10] have been previously de-
scribed in [6, 3]. However these implementations differ from the original description of symbol
elimination in a number of ways. Most notably, while the original description of the method
assumes that loops are given in a simple guarded command language, both implementations
instead take as input loops written in a subset of C, and hence can be used only for analyzing
loops written in C.

In this paper we describe a number of improvements and extensions to symbol elimination
and invariant generation using first-order theorem proving, in particular Vampire. Rather

∗This work was partially supported by the Wallenberg Academy Fellowship 2014, the Swedish VR grant
D0497701 and the Austrian research project FWF S11409-N23.

L.Kovács and A.Voronkov (eds.), Vampire 2014 and 2015 (EPiC Series in Computing, vol. 38), pp. 52–62

Reasoning about Loops Using Vampire Kovács and Robillard

than being limited to a specific programming language, our approach to reasoning about loops
in Vampire relies on a simple guarded command language for its input, which can be used
as an interface for more complex and realistic imperative languages. Compared to previous
results [6, 3], our work makes symbol elimination more efficient, and more importantly, provides
a clean interface for verifying various realistic imperative languages. Details on the guarded
language representation used by our work are given in Section 2, whereas symbol elimination
in Vampire is described in Section 3.

Our work is compatible with recent developments in Vampire. In order to take advan-
tage of these changes, the program analysis phase of symbol elimination – during which some
lightweight static analysis techniques are used as a first step to symbol elimination – has been
modified and improved. We propose new ways for extending quantified loop properties de-
scribing valid loop properties, by simplifying the properties over array updates and next state
relations. These improvements result in properties that are more easily handled by the infer-
ence engine of Vampire; they are detailed in Section 4. We also extended symbol elimination
by taking into consideration also the loop specification (contract), which may optionally be
given by the user in the form of pre- and post- conditions. If available, pre-conditions are
used to derive more precise invariants, and post-conditions can be used to select the subset of
invariants relevant to the verification task. We also turn symbol elimination into an automatic
(incomplete) way to directly prove the correctness of the loop w.r.t. to a contract. Our work
provides an alternative to Hoare-style verification of loops and avoids the need for explicitly
stated invariants. Generating relevant invariants and proving partial correctness of loops using
symbol elimination are presented in Section 5. We experimentally evaluate our work and report
on our result in Section 6.

In order to achieve the above improvements and extensions to symbol elimination, we com-
pletely re-implemented symbol elimination in Vampire. Our work provides a new and fully
automated tool for invariant generation and proving partial correctness of loops. Our imple-
mentation required 3000 lines of C++ code, is fully compatible with the recent version of Vampire
(version 3.0), and is available at www.cse.chalmers.se/~simrob.

2 Input Language

2.1 Syntax

Inputs to our approach are loops with nested conditionals, written in a simple guarded command
language. Loops may contain scalar variables and arrays ranging over (unbounded) integers.
In what follows, we use upper case letters A,B,C, . . . to denote array variables and lower case
letters a, b, c, . . . for scalars. We use standard arithmetical function symbols +,−, ·,÷ and
predicate symbols ≤,≥. We write A[p] to mean (an access to) the array element at position p
in the array A.

We describe loops by a loop condition and an ordered collection of guarded statements; the
loop condition is a quantifier-free Boolean formula over program variables. A guarded statement
is a pair of a guard (also a Boolean formula) and a collection of assignments. In our setting, a
guarded statement cannot contain two assignments to the same scalar variable v. If two array
assignments A[i] := e and A[j] := e′ occur in a guarded statement, the condition i 6= j is added
to the guard. These two restrictions ensure that each location is modified at most once by a
given guarded statement.

In addition to the loop itself, pre- and post-conditions can also be specified, using the
keywords requires and ensures, respectively. Pre- and post-conditions are Boolean formulas

53

www.cse.chalmers.se/~simrob

Reasoning about Loops Using Vampire Kovács and Robillard

requires (k == 0);
ensures forall int p, (0 <= p & p < n) ==>

(A[p] >= B[p]
& A[p] >= C[p]
& (A[p] == B[p] | A[p] == C[p]));

while (k < n) do
:: B[k] >= C[k] -> A[k] = B[k]; k = k + 1;
:: true -> A[k] = C[k]; k = k + 1;

od

Figure 1: Example of an input to our work. This example loop is composed of two guarded
statements; it computes the maximum of elements in arrays B and C at every position and
writes it in the corresponding position in the array A. The program specification is given by
the pre- (requires) and post-conditions (ensures).

over program variables, possibly with quantifiers.
Figure 1 gives an example of a loop using the syntax supported by our work.

2.2 Semantics
We define the semantics of the guarded command language by the notion of program states
mapping scalar variables to values of the correct type and arrays to functions. Note that arrays
bounds are not dealt with in the semantics: in a given state, an array storing values of type
τ is treated as a total function of type Z → τ . Array bounds checking may easily be encoded
with the help of guards if required. Evaluation of program expressions in a given state is done
in the standard way.

In our setting, there is exactly one program state for each loop iteration. The symbol n is
used to denote the upper bound on the number of loop iterations, so that for any loop iteration
i we have 0 ≤ i < n. We write σ0 and σn to respectively speak about the initial and final
state of the loop. If the loop condition is valid in a given program state σi, the first guarded
statement whose guard is valid is executed: its assignments are applied simultaneously to σi,
yielding the state σi+1. For example, executing the guarded statement

true -> x = 0; y = x;

in a state where x = 1 holds, yields a state in which y = 1 and not y = 0.
If the loop condition is not valid, or if none of the guards hold, the loop is terminated: σi

becomes the final state of the loop σn.
Note that while these semantics are deterministic, our method for invariant generation could

be adapted to work with non-deterministic semantics with only minor changes.

2.3 Simulating Complex Languages
While previous implementations of symbol elimination [6, 3] used a syntax similar to the C
programming language, only a subset of C programs could be analyzed. Many aspects of the
semantics of C were not taken into account.

By using a guarded command language, our implementation clarifies the semantics of the
input language. It is consequently easier to use the guarded command language as an rep-
resentation of the semantics of a program given in another language. In our experiments, we

54

Reasoning about Loops Using Vampire Kovács and Robillard

demonstrated this possibility by using the KeY verification system [1] to translate Java programs
with loops into our guarded command language.

Currently this translation is not complete: in order to fully encode the semantics of most
imperative languages used in industry, one must be able to represent exception throwing and
catching, abrupt termination and heap-related properties, among others. Many of those as-
pects can be easily and efficiently encoded by introducing additional Boolean variables in the
program, however at the time of writing, Boolean variables are not supported by our tool. This
support should be added soon, thanks to the recent introduction of a first-class Boolean sort in
Vampire [7].

3 Invariant Generation Using Symbol elimination
The symbol elimination method aims at producing invariants for a given loop, i.e. first-order
formulas in a language of assertions Lasrt that hold at arbitrary iterations of the loop. The
central idea of symbol elimination is to use formulas expressed in a language of extended
expressions Lextd during intermediate steps of the procedure. This language can express richer
properties of the loop than is possible with Lasrt: while any formula using symbols in Lasrt has
a semantic equivalent in Lextd, the converse is not true. During the procedure, we first deploy
static analysis techniques to extract properties of the loop expressed in Lextd. In a second
phase, we use saturation theorem proving to discover consequences of those properties that can
be expressed using only symbols from Lasrt. Such properties are loop invariants.

In this section, we define Lasrt and Lextd, then describe the symbol elimination procedure
to generate loop invariants. The definitions assume a given loop, in particular they depend on
the set of program variables used within that loop.

3.1 Assertions
We define Lasrt, the language of assertions, as follows. For each scalar variable v of type τ in
the loop, Lasrt includes two symbols v : τ and vinit : τ . For each array A storing values of type
τ , Lasrt includes a function symbol of type Z → τ . Interpretation of a formula using symbols
in Lasrt depends on a given program state σ. The symbol v is interpreted as the value of the
program variable v in that state, while vinit is interpreted as the value of that variable at the
start of the loop.

An invariant is a formula that uses symbols from Lasrt and is valid for any state σi. The
pre- and post-conditions of the loops are formulas in Lasrt that are required to hold at the
initial state σ0 and the final state σn, respectively.

3.2 Extended Expressions
Unlike Lasrt, symbols in Lextd do not depend on a particular program state for interpretation.
Formulas using such symbols can express properties of the loop at arbitrary states, such as the
relation between two successive program states.

For every variable v of type τ , Lextd includes a function of type Z → τ1. For convenience,
applications of these functions are noted v(i); they are interpreted as the value of v in the state
σi. For each array A, Lextd includes a function of type Z × Z → τ . Similarly, we use the
notation A(i)[p] to represent the value stored at position p after the ith iteration. We call v(i)

1The type N → τ would perhaps be more accurate, but in practice it is more efficient to add predicates
enforcing the non-negativity where needed.

55

Reasoning about Loops Using Vampire Kovács and Robillard

and A(i)[p] extended expressions. Note for any program expression E, we can build a term (or
predicate, in the case of Boolean program expressions) by systematically replacing each variable
by its extended expression. We may simply abbreviate such construction E(i).
Lextd also includes the symbol n which denotes the upper bound on the number of loop

iterations. Formulas in Lextd that are valid for a given loop are called extended loop properties.
The following semantic equivalences relate Lasrt and Lextd

v(0) ≡ vinit
v(n) ≡ v

A(0)[p] ≡ Ainit[p]
A(n)[p] ≡ A[p]

3.3 Loop Analysis and Symbol Elimination
In the first step of our invariant generation procedure, we perform simple static analysis to
generate extended loop properties. For example, analyzing the program in Figure 1 would lead
to generating the following property:

(∀i)(0 ≤ i < n =⇒ k(i+1) = k(i) + 1)

This property, which describes the assignment to the variable k at each iteration, is added to
the list of extended properties as an assumption. A comprehensive description of the analysis
performed by our tool and the resulting properties is given in Section 4. Note that this phase is
quite flexible, and additional properties (user knowledge, invariants generated by other tools. . .)
could potentially be added to the list of extended properties.

While the properties extracted during that phase are valid at arbitrary loop iterations,
they are not yet invariants as they use symbols extended expressions, symbols that are not in
Lasrt. The next step in our invariant generation process is to eliminate symbols that are not
in Lasrt. This is done by generating formulas that only use symbols from Lasrt and are logical
consequences of the properties in Lextd. To this end we use the prover to perform symbol
elimination and generate invariants in Lasrt. For more details on symbol elimination we refer
to [9].

4 Extracting Loop Properties
In this section, we list the properties extracted from the loop during the first phase of invariant
generation. It is important to note that there is no definitive way to chose which properties
must be extracted from the loop, as long as those properties are indeed consequences of the
loop semantics. The strength and the formulation of the properties play a great role in the
quality of the invariants produced.

4.1 Properties of Scalar Variables
Program variables that are never updated by the loop body are treated as constant symbols
during the analysis. For variables that are updated, simple static analysis techniques are used
to characterize the behavior of those updates.

Let us call a scalar variable v increasing if, for all possible computations of the loop, it has
the property

(∀i)(0 ≤ i < n =⇒ v(i+1) ≥ v(i))

56

Reasoning about Loops Using Vampire Kovács and Robillard

Similarly, we call v decreasing if

(∀i)(0 ≤ i < n =⇒ v(i+1) ≤ v(i))

A variable is said to be strict if it is modified at every iteration, i.e.

(∀i)(0 ≤ i < n =⇒ v(i+1) 6= v(i))

Finally a variable is called dense if its value is increased or decreased by at most one during
any iteration

(∀i)(0 ≤ i < n =⇒ |v(i+1) − v(i)| ≤ 1)

Having detected those properties of the variables, the following properties are added to the
list of extended properties:

1. If v is increasing, strict and dense, we add the property:

(∀i)(v(i) = v(0) + i)

2. If v is increasing and strict, but not dense, we add the property:

(∀i)(∀j)(j > i =⇒ v(j) > v(i))

3. If v is increasing but not strict, we add the property:

(∀i)(∀j)(j ≥ i =⇒ v(j) ≥ v(i))

4. If v is increasing and dense, but not strict, we add the property:

(∀i)(∀j)(j ≥ i =⇒ v(i) + j ≥ v(j) + i)

Similar properties, with the required modifications, are generated for decreasing variables.

4.2 Update Properties of Arrays
In order to describe the behavior of arrays, for each array we analyze the guarded statements
to collect:

1. the conditions under which the array is updated at position p by the value v during
iteration i. Let us consider the example in Figure 1, for the array A (the only one to be
updated), these conditions are

(0 ≤ i < n ∧ B(i)[k(i)] ≥ C(i)[k(i)] ∧ v = B(i)[k(i)] ∧ p = k(i))
∨ (0 ≤ i < n ∧ ¬B(i)[k(i)] ≥ C(i)[k(i)] ∧ v = C(i)[k(i)] ∧ p = k(i))

which we denote updA(i, p, v)

2. the conditions under which the array is updated at position p during iteration i, by any
value. For the same example, they are

(0 ≤ i < n ∧ B(i)[k(i)] ≥ C(i)[k(i)] ∧ p = k(i))
∨ (0 ≤ i < n ∧ ¬B(i)[k(i)] ≥ C(i)[k(i)] ∧ p = k(i))

these are noted updA(i, p)

57

Reasoning about Loops Using Vampire Kovács and Robillard

After this analysis we can express the following properties of the array:
1. if the array is never updated at a position p, the value at this position remains constant

(∀i p)
(
¬updA(i, p) =⇒ B(n)[p] = B(0)[p]

)
2. if the array is updated only once at a position p, the value associated with this update is

the final value

(∀i j p v)
(
updA(i, p, v) ∧ (updA(j, p) =⇒ j = i) =⇒ B(n)[p] = v

)
Note that compared to [8], the second property has been modified as it used to read

(∀i j p v)
(
updA(i, p, v) ∧ (updA(j, p) =⇒ j ≤ i) =⇒ B(n)[p] = v

)
While less general, the new property is more easily handled by the prover, since equality is a
built-in predicate of the superposition calculus used by Vampire.

In previous implementations, predicate symbols corresponding to updA were used in both
properties, and assumptions giving the predicate definitions were also added. Those predicate
symbols were then eliminated. The new tool replaces every occurrence of the predicate symbol
directly by its definition, thus increasing efficiency and the quality of invariants produced.

4.3 Assignments
The relation between two consecutive states, and in particular the effects of assignments on
states, can be described by extended expressions.

For the program in Figure 1, the following two properties (one for each guarded statement)
are extracted and added to the extended properties.

(∀i)(0 ≤ i < n ∧B(i)[k(i)] ≥ C(i)[k(i)] =⇒ A(i+1)[k(i)] = B(i)[k(i)]
∧ k(i+1) = k(i) + 1

(∀i)(0 ≤ i < n ∧ ¬B(i)[k(i)] ≥ C(i)[k(i)] =⇒ A(i+1)[k(i)] = C(i)[k(i)]
∧ k(i+1) = k(i) + 1

4.4 Additional Properties
Finally the property indicating that the loop condition and one guard must hold at any given
iteration is added to the assumptions.

(∀i)(0 ≤ i < n =⇒
∨
j

G
(i)
j ∧ C

(i))

In the original description of the symbol elimination method, arithmetic function and pred-
icate symbols were introduced as needed and given an axiomatization. This is no longer neces-
sary, as we use the default symbols now provided by Vampire. At the moment, any arithmetic
reasoning in Vampire is still based on axiomatic theories, but symbol elimination would directly
benefit from any further development concerning arithmetic reasoning in Vampire.

As noted before, the list of extended properties is not definitive. This makes our method
flexible, as additional properties can potentially be added to the assumptions, whether it be
user knowledge or properties gathered by other invariant generation techniques (e.g. [4, 5])

58

Reasoning about Loops Using Vampire Kovács and Robillard

5 Loop Contract and Correctness

Previous works on symbol elimination [6, 3] report every property discovered during symbol
elimination. This often results in hundreds of clauses being reported to the user in a few seconds,
many of which are consequences of each other. To address this issue, a post-processing step was
added during which some redundant clauses were eliminated. However minimizing a set of first-
order clauses is an undecidable problem. Even if a minimal set of clauses is obtained, previous
works on symbol elimination do not take into account a verification contract (specification)
for analyzing and verifying loops. Therefore there is no realistic way to assess the quality
of generated invariants in the process of verification. We also note that symbol elimination
generates invariants that hold at any iteration of the loop, but may not be inductive. Using
non-inductive invariants makes software verification harder.

By enabling the user to specify a post-condition of the loop, and using it to select relevant
invariants within the set produced by symbol elimination, we address those issues. Unlike
previous works, our work enables the user to specify optional pre- and post-conditions for
the loop under analysis, using the keywords requires and ensures, respectively. They are
expressions in Lasrt (quantified Boolean formulas over program variables).

5.1 Pre-conditions

Recall that any expression in Lasrt can be translated to an expression Lextd. Pre-conditions
given by the user as expressions in Lasrt are simply translated to Lextd and added to the
extended properties. For example this precondition

requires forall int p, 0 <= p & p < l ==> A[p] != 0

results in the following property being added to the extended properties:

(∀i)(0 ≤ p < l =⇒ A(0)[p] 6= 0)

Such additional information enables symbol elimination to derive stronger invariants.

5.2 Invariant filtering

Given a loop condition C, a post-condition P and a set of invariants I1, . . . , Ik produced by
symbol elimination, we attempt to prove P under the assumptions I1 ∧ · · · ∧ Ik ∧ ¬C. If the
refutation proof succeeds, we can select the subset of invariants that were effectively used: they
are among the leaves of the proof tree.

This filtering process is carried out in parallel of symbol elimination. One instance Sgen

of the saturation algorithm is ran to generate invariants, possibly with a time limit. Another
instance Sfilter is started on a different thread, it initially tries to prove P assuming only
¬C. Each time a new invariant is discovered by Sgen, it is added to the list of assumptions in
Sfilter, and the proof attempt is restarted. This way, the process can stop as soon as the set of
discovered invariants is strong enough to imply the post-condition. If the time limit of Sgen is
reached however, the whole process is aborted.

This filtering mechanism also provides a good heuristic to select an inductive invariant.
While this is not always true, our experiments (Section 6) show that the set of invariant selected
is usually inductive.

59

Reasoning about Loops Using Vampire Kovács and Robillard

5.3 Direct Proof of Correctness
During invariant filtering, we use invariants, which are consequences of the extended properties,
to prove the post-condition. In any case where this succeeds, the post-condition is also a
consequence of the extended properties.

As an alternative to invariant filtering, our tool offers the option of omitting the symbol
elimination stage and proving the post-condition from the extended properties themselves. In
this setting, no invariants are used or reported. This provides an alternative to classic Hoare-
style verification of loops which, while incomplete, is fully automatic.

Finding a direct proof of correctness of the loop is faster than performing invariant filtering
(see Section 6) and should succeed for every program where invariant filtering succeeds. In some
cases, due to the fact that extended properties are stronger than the invariants they imply, a
direct proof may even succeed where invariant filtering does not.

6 Experimental Results

6.1 Benchmarks
We evaluated our tool on 20 challenging array benchmarks taken from academic papers [2, 3] and
the C standard library. Our benchmarks are listed in Table 1. The program absolute computes
the absolute value of every element in an array, whereas copy, copyOdd and copyPositive copy
(some) elements of an array to another. The example find searches for the position of a certain
value in an array, returning -1 if the value is absent. The program findMax locates the maximum
in an unsorted array. The examples init, initEven, and initPartial initialize (some) array
elements with a constant, whereas initNonConstant sets the value of array elements to a value
depending on array positions. inPlaceMax replaces every negative value in an array by 0, and
max computes the maximum of two arrays at every position. mergeInterleave interleaves the
content of two arrays, whereas partition copies negative and non-negative values from a source
array into two different destination arrays. reverse copies an array in reverse order, and swap
exchanges the content of two arrays. Finally, strcpy and strlen are taken from the standard
C library. Each benchmark contains a loop together with its specification. All experiments
were performed on a computer with a 2.1 GHz quad-core processor and 8GB of RAM.

6.2 Results
Table 1 summarizes our results. The second column indicates whether the benchmark loops
contain conditionals. Column ∆direct shows the time required to prove the partial correctness
of the benchmarks, by proving the loop specification from the extended properties generated
by program analysis in Vampire. On the other hand, column ∆filter gives the time needed by
our tool to generate the relevant invariants from which the loop post-condition can be proved.
The time results are given in seconds. Where no time is given, a correctness proof/filtering of
relevant invariants was not successful. Column N5 shows the number of all invariants generated
by our tool with a time limit of 5 seconds (before filtering of relevant invariants). The figure
listed in parentheses gives the number of invariants produced by a previous implementation [3]
of invariant generation in Vampire. Finally, column Nfilter reports the number of invariants
selected as relevant invariants; the conjunction of these invariants is the relevant invariant from
which the loop specification can be derived.

Note that for all examples, our tool successfully generated quantified loop invariants. More-
over, when compared to the previous implementation [3] of invariant generation in Vampire,

60

Reasoning about Loops Using Vampire Kovács and Robillard

Table 1: Experimental results on loop reasoning using Vampire.
Name Cond. ∆direct ∆filter N5 Nfilter

absolute yes 0.271 2.358 19 3
copy no 0.043 2.194 9 (37) 1
copyOdd no 0.122 2.090 9 (214) 1
copyPartial no 0.042 3.145 9 1
copyPositive yes 9
find yes 123
findMax yes 3
init no 0.035 2.059 9 (35) 1
initEven no 10
initNonConstant no 0.114 2.054 9 (104) 1
initPartial no 0.042 3.129 9 1
inPlaceMax yes 39
max yes 0.696 3.535 20 2
mergeInterleave no 20
partition yes 164 (647)
partitionInit yes 98 (169)
reverse no 0.038 9 (42)
strcpy no 0.036 2.126 9 1
strlen no 0.018 2.023 2 (26) 1
swap no 26

our tool brings a significant performance increase: in all examples where the implementation
of [3] succeeded to generate invariants, the number of invariants generated by our tool is much
less than in [3]. For example, in the case of the program copyOdd, the number of invariants
generated by our tool has decreased by a factor of 24 when compared to [3]. This increase in
performance is due to our improved program analysis for generating extended loop properties.
For the examples where the number of invariants generated by [3] is missing, the approach of [3]
failed to generate quantified loop invariants over arrays. We also note that invariants generated
by [3] are logical consequences of the invariants generated by our tool.

When evaluating our tool for proving correctness of the examples, we succeeded for 11
examples out of 20, as shown in column ∆direct of Table 1. For these 11 examples, the partial
correctness of the loop was proved by Vampire by using the extended loop properties generated
by our tool. Further, for 10 out of these 11 examples, our tool successfully selected the relevant
invariants from which the loop specification could be proved. For the example reverse the
relevant invariants could not be selected within a 5 seconds time, even though the partial
correctness of the loop was established using the extended properties of the loop.

When analyzing the 9 examples for which our tool failed to generate relevant invariants and
to prove partial correctness, we noted that these examples involve non-trivial arithmetic and
array reasoning. We believe that improving reasoning with full first-order theories in Vampire
would allow us to select the relevant invariants from those generated by our tool.

61

Reasoning about Loops Using Vampire Kovács and Robillard

7 Conclusion
We provide a new and fully automated tool for invariant generation, by re-implementing and
improving program analysis and symbol elimination in Vampire. One of these improvements
is the dedicated parser for the guarded command language, which can now be used a sim-
ple way to describe the semantics of a loop. We also introduce a number of simplifications
during the generation of extended properties of loops, leading to an increased quality in the
invariants produced. We allow the possibility of specifying a verification contract for the loop
being analyzed, and we add a filtering stage to output only invariants that are relevant to the
partial correctness of the loop w.r.t. to that contract. We also extend symbol elimination to
directly prove partial correctness of loops, without the need for explicitly stating invariants.
We experimentally evaluated our tool on a number of examples.

For future work, we intend to improve theory reasoning in Vampire; this should benefit
program analysis as well as more traditional applications of the theorem prover. The analysis
of programs that we perform generates first-order problems, which we believe are challenging
benchmarks for reasoning with quantifiers and theories. They would be an interesting addition
to the CASC theorem proving competition [11]. We are also interested in analyzing more
complex programs and support the translation of the full semantics of a programming language
such as Java into our program analysis framework.

References
[1] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. Verification of object-oriented software:

The KeY approach. Springer-Verlag, 2007.
[2] I. Dillig, T. Dillig, and A. Aiken. Fluid Updates: Beyond Strong vs. Weak Updates. In ESOP,

volume 6012 of LNCS, pages 246–266, 2010.
[3] I. Dragan and L. Kovács. Lingva: Generating and Proving Program Properties Using Symbol

Elimination. In PSI, volume 8974 of LNCS, pages 67–75, 2014.
[4] J. P. Galeotti, C. A. Furia, E.May, G. Fraser, and A. Zeller. DynaMate: Dynamically Inferring

Loop Invariants for Automatic Full Functional Verification. In Proc. of HVC, volume 8855 of
LNCS, pages 48–53, 2014.

[5] A. Gupta and A. Rybalchenko. InvGen: An Efficient Invariant Generator. In CAV, volume 5643
of LNCS, pages 634–640, 2009.

[6] Kryštof Hoder, Laura Kovács, and Andrei Voronkov. Invariant generation in vampire. In Tools
and Algorithms for the Construction and Analysis of Systems, pages 60–64. Springer, 2011.

[7] Evgenii Kotelnikov, Laura Kovács, and Andrei Voronkov. A first class boolean sort in first-order
theorem proving and TPTP. In CICM, 2015. To appear.

[8] Laura Kovács and Andrei Voronkov. Finding Loop Invariants for Programs over Arrays using a
Theorem Prover. In FASE, volume 8044 of LNCS, pages 470–485, 2009.

[9] Laura Kovács and Andrei Voronkov. Interpolation and symbol elimination. In Automated
Deduction–CADE-22, pages 199–213. Springer, 2009.

[10] Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In CAV, volume
5503 of LNCS, pages 1–35, 2013.

[11] Geoff Sutcliffe. The CADE-24 automated theorem proving system competition - CASC-24. AI
Commun., 27(4):405–416, 2014.

62

	Introduction
	Input Language
	Syntax
	Semantics
	Simulating Complex Languages

	Invariant Generation Using Symbol elimination
	Assertions
	Extended Expressions
	Loop Analysis and Symbol Elimination

	Extracting Loop Properties
	Properties of Scalar Variables
	Update Properties of Arrays
	Assignments
	Additional Properties

	Loop Contract and Correctness
	Pre-conditions
	Invariant filtering
	Direct Proof of Correctness

	Experimental Results
	Benchmarks
	Results

	Conclusion

